Electro-Optic Technology Application, Volume. 37, Issue 4, 27(2022)

Advances in All-solid-state Laser for Novel Low-dimensional Material Saturated Absorbers (Invited)

YAN Bingzheng1...2, BAI Zhenxu1,2, QI Yaoyao1,2, DING Jie1,2, CUI Can1,2, WANG Yulei1,2, and LV Zhiwei12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(91)

    [1] [1] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature,1960,187(4736): 493.

    [6] [6] HAO Q, WANG C, LIU W, et al. Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: status and prospects[J]. Nanophotonics, 2020, 9(9): 2603.

    [7] [7] ZHANG B, LIU J, WANG C, et al. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers[J]. Laser & Photonics Reviews, 2020, 14(2): 1900240.

    [8] [8] GUERREIRO P T, TEN S, BORRELLI N F, et al. PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser[J]. Applied Physics Letters, 1997, 71(12): 1595.

    [9] [9] SET S Y, YAGUCHI H, TANAKA Y, et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. Lightwave Technology Journal of, 2004, 22(1): 51.

    [10] [10] BAO Q, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077.

    [12] [12] MA C, WANG C, GAO B, et al. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber[J]. Applied Physics Reviews, 2019, 6(4): 41304.

    [13] [13] GUO B, XIAO Q L, WANG S H, et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications[J]. Laser&Photonics Reviews, 2019, 13(12): 1800327.

    [15] [15] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials,2017,2(8): 17033.

    [16] [16] JING Y, LIU B, ZHU X, et al. Tunable electronic structure of two-dimensional transition metal chalcogenides for optoelectronic applications[J]. Nanophotonics,2020,9(7): 1675.

    [17] [17] WEN X, GONG Z, LI D. Nonlinear optics of two-dimensional transition metal dichalcogenides[J]. InfoMat, 2019, 1(3): 317.

    [18] [18] KRASNOK A, LEPESHOV S, Alú A. Nanophotonics with 2D transition metal dichalcogenides (Invited)[J]. Optics Express, 2018, 26(12): 15972.

    [19] [19] MOHANRAJ J, VELMURUGAN V, SIVABALAN S. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology[J]. Optical Materials, 2016, 60(60): 601.

    [20] [20] SU X, NIE H, WANG Y, et al. Few-layered ReS2 as saturable absorber for 2.8 μm solid state laser[J]. Optics Letters, 2017, 17(42): 3502.

    [21] [21] SU X, ZHANG B, WANG Y, et al. Broadband rhenium disulfide optical modulator for solid-state lasers[J]. Photonics Research, 2018, 6(6): 498.

    [22] [22] MA Y, TIAN K, DOU X, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb:YCOB microchip laser[J]. Optics Express, 2018, 26(19): 25147.

    [23] [23] DONG L, LIU F, CHEN J, et al. Highly efficient continuous-wave and passively Q-switched Yb:YLuGdCOB compact lasers[J]. Optics Express, 2021, 29(2): 1838.

    [24] [24] TAO L, HUANG X, HE J, et al. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser[J]. Photonics Research, 2018, 6(7): 750.

    [25] [25] LIN M, PENG Q, HOU W, et al. 1.3 μm Q-switched solid-state laser based on few-layer ReS2 saturable absorber[J]. Optics&Laser Technology,2019(109): 90

    [26] [26] ZHANG S, LIU X, PENG F, et al. Continuous wave and rhenium disulphide-based Nd:GdTaO4 laser under direct pumping[J]. Optics&Laser Technology,2021(141): 107112.

    [27] [27] YAN B, ZHANG B, NIE H, et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber[J]. Optics Express, 2018, 26(14): 18505.

    [28] [28] ZHANG Y, WANG J, GUAN X, et al. MoTe2-based broadband wavelength tunable eye-safe pulsed laser source at 1.9 μm[J]. IEEE Photonics Technology Letters, 2018, 30(21): 1890.

    [29] [29] YAN B, ZHANG B, NIE H, et al. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers[J]. Optics Express, 2018, 26(24): 31657.

    [30] [30] CUI N, ZHANG F, ZHAO Y, et al. The visible nonlinear optical properties and passively Q-switched laser application of a layered PtSe2 material[J]. Nanoscale, 2020, 12(2): 1061.

    [31] [31] YAN B, ZHANG B, NIE H, et al. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers[J]. Nanoscale, 2018, 10(43): 20171.

    [32] [32] NIE H, SUN X, ZHANG B, et al. Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 295 μm bulk laser[J]. Optics Letters, 2018, 43(14): 3349.

    [33] [33] GAO T, ZHANG Q, LI L, et al. 2D ternary chalcogenides[J]. Advanced Optical Materials, 2018, 6(14): 1800058.

    [34] [34] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216.

    [35] [35] SUN X, WANG Y, YAN B, et al. Stoichiometric modulation on optical nonlinearity of 2D MoSxSe2-xalloys for photonic applications[J]. Nanophotonics, 2021, 10(18): 4623.

    [36] [36] YAN B, GUO H, HE G, et al. Ta2NiSe5 nanosheets as a novel broadband saturable absorber for solid-state pulse laser generation[J]. Science China Materials, 2021, 64(6): 1468.

    [37] [37] YAN B, ZHANG B, HE J, et al. MoSSe saturable absorber-based high-power passively Q-switched 2.0 μm bulk laser[J]. IEEE Photonics Technology Letters, 2019, 31(3): 261.

    [38] [38] XU S, WANG Q, ZHANG H, et al. Nonlinear optical properties and Q-switched laser application of a novel Mo0. 5Re0. 5S2 ternary alloy material at 2 μm[J]. Applied Physics Express, 2020, 13(2): 22006.

    [39] [39] YAN B, ZHANG B, He J, et al. Ternary chalcogenide Ta2NiS5 as a saturable absorber for a 1.9??μm passively Q-switched bulk laser[J]. Optics Letters, 2019, 44(2): 451.

    [40] [40] ZHANG H, XU S, WANG Q, et al. 2 μm passively Q-switched all-solid-state laser based on a Ta2NiSe5 saturable absorber[J]. Optical Materials Express,2020,10(12): 3090.

    [41] [41] NIU Z, FENG T, LI T, et al. Nonlinear optical response of ternary chalcogenide nanoflakes for the pulse generation near 2μm[J]. Optical Materials, 2021(114): 111001.

    [42] [42] LIU S, HUANG H, LU J, et al. Liquid-phase exfoliation of Ta2NiS5 and its application in near-infrared mode-locked fiber lasers with evanescent field interactions and passively Q-switched bulk laser[J]. Nanomaterials, 2022, 12(4): 695.

    [43] [43] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248.

    [44] [44] JEON J, YANG Y, CHOI H, et al. MXenes for future nanophotonic device applications[J]. Nanophotonics, 2020, 9(7): 1831.

    [45] [45] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992.

    [46] [46] SUN X, ZHANG B, YAN B, et al. Few-layer Ti3C2Tx (T=O, OH, or F) saturable absorber for a femtosecond bulk laser[J]. Optics Letters, 2018, 43(16): 3862.

    [47] [47] TIAN Q, YIN P, ZHANG T, et al. MXene Ti3C2Tx saturable absorber for passively Q-switched mid-infrared laser operation of femtosecond-laser-inscribed Er: Y2O3 ceramic channel waveguide[J]. Nanophotonics, 2020, 9(8): 2495.

    [48] [48] NIU Z, FENG T, YANG K, et al. MXene Ti3C2Tx (T=F, O, or OH) saturable absorber for a 2 μm doubly Q-switched laser with AOM[J]. Optics&Laser Technology, 2021(134): 106642.

    [49] [49] ZU Y, ZHANG C, GUO X, et al. A solid-state passively Q-switched Tm, Gd: CaF2 laser with a Ti3C2Tx MXene absorber near 2 μm[J]. Laser Physics Letters, 2019, 16(1): 15803.

    [50] [50] YANG Q, ZHANG F, ZHANG N, et al. Few-layer MXene Ti3C2Tx (T?=?F, O, or OH) saturable absorber for visible bulk laser[J]. Optical Materials Express, 2019, 9(4): 1795.

    [51] [51] WANG J, LIU S, WANG Y, et al. Magnetron-sputtering deposited molybdenum carbide MXene thin films as a saturable absorber for passively Q-switched lasers[J]. Journal of Materials Chemistry C, 2020, 8(5): 1608.

    [52] [52] FENG C, QIAO W, LIU Y, et al. Modulation of MXene Nb2CTx saturable absorber for passively Q-switched 2.85 micron Er:Lu2O3laser[J]. Optics Letters, 2021, 46(6): 1385-1388.

    [53] [53] CAO L, CHU H, PAN H, et al. Nonlinear optical absorption features in few-layered hybrid Ti3C2(OH)2/Ti3C2F2MXene for optical pulse generation in the NIR region[J]. Optics Express, 2020, 28(21): 31499.

    [54] [54] ZHANG T, CHU H, DONG L, et al. Synthesis and optical nonlinearity investigation of novel Fe3O4@Ti3C2 MXene hybrid nanomaterials from 1 to 2 μm[J]. Journal of Materials Chemistry C, 2021, 9(5): 1772.

    [55] [55] WANG Y, WANG J, WEN Q. MXene/Graphene oxide heterojunction as a saturable absorber for passively Q-switched solid-state pulse lasers[J]. Nanomaterials, 2021, 11(3): 720.

    [56] [56] TAO W, KONG N, JI X, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications[J]. Chemical Society Reviews, 2019, 48(11): 2891.

    [57] [57] MOLLE A, GOLDBERGER J, HOUSSA M, et al. Buckled two-dimensional Xene sheets[J]. Nature Materials, 2017, 16(2): 163.

    [58] [58] PUMERA M, SOFER Z. 2D Monoelemental arsenene, antimonene,and bismuthene: beyond black phosphorus[J]. Advanced Materials, 2017, 29(21): 1605299.

    [59] [59] ZHANG G, TANG X, FU X, et al. 2D group-VA fluorinated antimonene: synthesis and saturable absorption[J]. Nanoscale, 2019, 11(4): 1762.

    [60] [60] DONG L, HUANG W, CHU H, et al. Passively Q-switched near-infrared lasers with bismuthene quantum dots as the saturable absorber[J]. Optics&Laser Technology, 2020, 128(9): 106219.

    [61] [61] YANG Z, HAN L, YANG Q, et al. Two-dimensional tellurium saturable absorber for ultrafast solid-state laser[J]. Chinese Optics Letters, 2021, 19(3): 31401.

    [62] [62] YAN B, LI G, SHI B, et al. 2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber[J]. Nanophotonics, 2020, 9(8): 2593.

    [63] [63] WANG M, ZHANG F, WANG Z, et al. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber[J]. Optics Express, 2018, 26(4): 4085.

    [64] [64] LIU J, HUANG H, ZHANG F, et al. Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser[J]. Photonics Research, 2018, 6(8): 762.

    [65] [65] SU X, WANG Y, ZHANG B, et al. Bismuth quantum dots as an optical saturable absorber for a 1.3 μm Q-switched solid-state laser[J]. Applied Optics, 2019, 58(7): 1621-1625.

    [66] [66] PAN H, HUANG W, CHU H, et al. Bismuthene quantum dots based optical modulator for MIR lasers at 2 μm[J]. Optical Materials, 2020(102): 109830.

    [67] [67] CHEN H, ZHOU M, ZHANG P, et al. Passively Q-switched Nd:GYAP laser at 1.3 μm with bismuthene nanosheets as a saturable absorber[J]. Infrared Physics&Technology, 2022(121): 104023.

    [68] [68] YANG Q, ZHANG X, YANG Z, et al. Tellurium as the saturable absorber for the passively Q-switched laser at 1.34 μm[J]. Applied Optics, 2020, 59(9): 2892.

    [69] [69] TANG T, ZHANG F, WANG M, et al. Two-dimensional tellurene nanosheets as saturable absorber of passively Q-switched Nd: YAG solid-state laser[J]. Chinese Optics Letters, 2020, 18(4): 41403.

    [70] [70] HAN L, YANG Z, YANG Q, et al. Visible nonlinear optical properties of tellurium and application as saturable absorber[J]. Optics&Laser Technology, 2021(137): 106817.

    [71] [71] NIE H, DUAN W, LIU J, et al. Two-dimensional Au&Ag hybrid plasmonic nanoparticle network: broadband nonlinear optical response and applications for pulsed laser generation[J]. Nanophotonics, 2020, 9(8): 2537.

    [73] [73] ZHANG Y, WANG Y. Nonlinear optical properties of metal nanoparticles: a review[J]. RSC Advances, 2017, 7(71): 45129.

    [74] [74] FU B, SUN J, CHENG Y, et al. Recent progress on metal-based nanomaterials: fabrications, optical properties, and applications in ultrafast photonics[J]. Advanced Functional Materials, 2021, 31(49): 2107363.

    [75] [75] HUANG H T, LI M, WANG L, et al. Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser[J]. IEEE Photonics Journal, 2015, 7(4): 1.

    [76] [76] LIU J, YE S, WANG F, et al. Femtosecond mode-locked Yb:KYW laser based on InP nanowire saturable absorber[J]. IEEE Photonics Technology Letters, 2022, 34(5): 247.

    [77] [77] WANG S, ZHANG Y, XING J, et al. Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers[J]. Applied Physics Letters, 2015, 11(16): 407.

    [78] [78] HUANG H, LI M, LIU P, et al. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser[J]. Optics Letters, 2016, 12(41): 2700.

    [79] [79] WANG C, ZU J, LONG J, et al. Q-switching Yb3+: YAG lasers based on plasmon resonance nonlinearities of Cu2-xSe@Cu2-xS nanorods[J]. Optics Letters, 2017, 42(13): 2619.

    [80] [80] ZHANG G, LIU T, SHEN Y, et al. 516 mW, nanosecond Nd: LuAG laser Q-switched by gold nanorods[J]. Chinese Optics Letters, 2018, 16(2): 20011.

    [81] [81] WANG S, ZHANG Y, ZHANG R, et al. High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption[J]. Advanced Optical Materials, 2015, 3(10): 1342.

    [82] [82] WANG X, WANG Y, MAO D, et al. Passively Q-switched Nd:YVO4 laser based on Fe3O4 nanoparticles saturable absorber[J]. Optical Materials Express, 2017, 7(8): 2913.

    [83] [83] DUAN W, NIE H, SUN X, et al. Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber[J]. Optics Letters, 2018, 43(5): 1179.

    [84] [84] PANG C, LI R, LI Z, et al. Lithium niobate crystal with embedded Au nanoparticles: a new saturable absorber for efficient mode-locking of ultrafast laser pulses at 1 μm[J]. Advanced Optical Materials, 2018, 6(16): 1800357.

    [85] [85] LIU X, YANG K, ZHAO S, et al. Silicon-nanoparticle-based broadband optical modulators for solid-state lasers[J]. Optics Letters, 2018, 43(24): 5957.

    [86] [86] XIAN Y, CAI Y, SUN X, et al. Refractory plasmonic metal nitride nanoparticles for broadband near-infrared optical switches[J]. Laser&Photonics Reviews, 2019, 13(6): 1900029.

    [87] [87] FENG X, LIU J, YANG W, et al. Broadband indium tin oxide nanowire arrays as saturable absorbers for solid-state lasers[J]. Optics Express, 2020, 28(2): 1554.

    [88] [88] ZHAO Y, ZONG M, ZHENG J, et al. Indium tin oxide nanowire arrays as a saturable absorber for mid-infrared Er: Ca0.8Sr0.2F2 laser[J]. Nanomaterials, 2022, 12(3): 454.

    [89] [89] LIU J, NIE H, YAN B, et al. Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber[J]. Photonics Research, 2020, 8(6): 1035.

    [90] [90] ZHANG H, LIU J. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1?? μm region[J]. Optics Letters, 2016, 41(6): 1150.

    [91] [91] CHU Z, ZHANG H, WU Y, et al. Passively Q-switched laser based on gold nanobipyramids as saturable absorbers in the 1.3 μm region[J]. Optics Communications, 2018(406): 209.

    [92] [92] WANG P, YANG Q, WANG X. Gold nanostars as the saturable absorber for a Q-switched visible solid-state laser[J]. Applied Optics, 2019, 58(25): 6733.

    [94] [94] WANG Z, ZHOU T, JIANG T, et al. Dimensional crossover and topological nature of the thin films of a three-dimensional topological insulator by band gap engineering[J]. Nano Letters, 2019, 19(7): 4627.

    [95] [95] BIELE R, FLORES E, ARES J R, et al. Strain-induced band gap engineering in layered TiS3[J]. Nano Research, 2018, 11(1): 225.

    [97] [97] WANG Y, HUANG W, WANG C, et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator[J]. Laser&Photonics Reviews, 2019, 13(4): 1800313.

    [98] [98] BOGUSLAWSKI J, WANG Y, XUE H, et al. Graphene actively mode-locked lasers[J]. Advanced Functional Materials, 2018, 28(28): 1801539.

    [99] [99] SAIN B, ZENTGRAF T. Metasurfaces help lasers to mode-lock[J]. Light: Science& Applications, 2020, 9(1): 9.

    [100] [100] WANG J, COILLET A, DEMICHEL O, et al. Saturable plasmonic metasurfaces for laser mode locking[J]. Light: Science&Applications, 2020, 9(1): 1.

    Tools

    Get Citation

    Copy Citation Text

    YAN Bingzheng, BAI Zhenxu, QI Yaoyao, DING Jie, CUI Can, WANG Yulei, LV Zhiwei. Advances in All-solid-state Laser for Novel Low-dimensional Material Saturated Absorbers (Invited)[J]. Electro-Optic Technology Application, 2022, 37(4): 27

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 1, 2022

    Accepted: --

    Published Online: Dec. 14, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics