Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618015(2024)

Three-Dimensional Orientation and Localization Microscopy of Single Molecules Using Super-Resolution Imaging Technology (Invited)

Ruihang Zhao and Jin Lu*
Author Affiliations
  • Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    References(66)

    [1] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [2] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [3] Sharonov A, Hochstrasser R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 18911-18916(2006).

    [4] Jungmann R, Steinhauer C, Scheible M et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami[J]. Nano Letters, 10, 4756-4761(2010).

    [5] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [6] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [7] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [8] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206-8210(2000).

    [9] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [10] Boehr D D, Nussinov R, Wright P E. The role of dynamic conformational ensembles in biomolecular recognition[J]. Nature Chemical Biology, 5, 789-796(2009).

    [11] Adachi K, Oiwa K, Nishizaka T et al. Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation[J]. Cell, 130, 309-321(2007).

    [12] Lewis J H, Lu Z. Resolution of ångström-scale protein conformational changes by analyzing fluorescence anisotropy[J]. Nature Structural & Molecular Biology, 26, 802-807(2019).

    [13] Wen J T, Hong L, Krainer G et al. Conformational expansion of tau in condensates promotes irreversible aggregation[J]. Journal of the American Chemical Society, 143, 13056-13064(2021).

    [14] Brouwer I, Lenstra T L. Visualizing transcription: key to understanding gene expression dynamics[J]. Current Opinion in Chemical Biology, 51, 122-129(2019).

    [15] Wang T, Hu J J, Li Y N et al. Bloom syndrome helicase compresses single-stranded DNA into phase-separated condensates[J]. Angewandte Chemie: International Edition, 61, e202209463(2022).

    [16] Lakowicz J R[M]. Principles of Fluorescence Spectroscopy(2006).

    [17] Fourkas J T. Rapid determination of the three-dimensional orientation of single molecules[J]. Optics Letters, 26, 211-213(2001).

    [18] Ohmachi M, Komori Y, Iwane A H et al. Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 5294-5298(2012).

    [19] Quinlan M E, Forkey J N, Goldman Y E. Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy[J]. Biophysical Journal, 89, 1132-1142(2005).

    [20] Forkey J N, Quinlan M E, Goldman Y E. Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy[J]. Biophysical Journal, 89, 1261-1271(2005).

    [21] Rosenberg S A, Quinlan M E, Forkey J N et al. Rotational motions of macro-molecules by single-molecule fluorescence microscopy[J]. Accounts of Chemical Research, 38, 583-593(2005).

    [22] Cluzel P, Lebrun A, Heller C et al. DNA: an extensible molecule[J]. Science, 271, 792-794(1996).

    [23] Smith S B, Cui Y, Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules[J]. Science, 271, 795-799(1996).

    [24] Backer A S, Biebricher A S, King G A et al. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA[J]. Science Advances, 5, eaav1083(2019).

    [25] Backer A S, Lee M Y, Moerner W E. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements[J]. Optica, 3, 659-666(2016).

    [26] Gould T J, Gunewardene M S, Gudheti M V et al. Nanoscale imaging of molecular positions and anisotropies[J]. Nature Methods, 5, 1027-1030(2008).

    [27] Cruz C A V, Shaban H A, Kress A et al. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, E820-E828(2016).

    [28] Reinhardt S C M, Masullo L A, Baudrexel I et al. Ångström-resolution fluorescence microscopy[J]. Nature, 617, 711-716(2023).

    [29] Bartko A P, Dickson R M. Three-dimensional orientations of polymer-bound single molecules[J]. The Journal of Physical Chemistry B, 103, 3053-3056(1999).

    [30] Lew M D, Backlund M P, Moerner W E. Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy[J]. Nano Letters, 13, 3967-3972(2013).

    [31] Backlund M P, Arbabi A, Petrov P N et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask[J]. Nature Photonics, 10, 459-462(2016).

    [32] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [33] Backlund M P, Lew M D, Backer A S et al. The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging[J]. ChemPhysChem, 15, 587-599(2014).

    [34] Mortensen K I, Churchman L S, Spudich J A et al. Optimized localization analysis for single-molecule tracking and super-resolution microscopy[J]. Nature Methods, 7, 377-381(2010).

    [35] Böhmer M, Enderlein J. Orientation imaging of single molecules by wide-field epifluorescence microscopy[J]. Journal of the Optical Society of America B, 20, 554-559(2003).

    [36] Aguet F, Geissbühler S, Märki I et al. Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters[J]. Optics Express, 17, 6829-6848(2009).

    [37] Patra D, Gregor I, Enderlein J. Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies[J]. The Journal of Physical Chemistry A, 108, 6836-6841(2004).

    [38] Lu J, Mazidi H, Ding T B et al. Single-molecule 3D orientation imaging reveals nanoscale compositional heterogeneity in lipid membranes[J]. Angewandte Chemie: International Edition, 59, 17572-17579(2020).

    [39] Curcio V, Alemán-Castañeda L A, Brown T G et al. Birefringent Fourier filtering for single molecule coordinate and height super-resolution imaging with dithering and orientation[J]. Nature Communications, 11, 5307(2020).

    [40] Vella A, Alonso M A. Optimal birefringence distributions for imaging polarimetry[J]. Optics Express, 27, 36799-36814(2019).

    [41] Willig K I, Rizzoli S O, Westphal V et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 440, 935-939(2006).

    [42] Hulleman C N, Thorsen R Ø, Kim E et al. Simultaneous orientation and 3D localization microscopy with a Vortex point spread function[J]. Nature Communications, 12, 5934(2021).

    [43] Backer A S, Moerner W E. Extending single-molecule microscopy using optical Fourier processing[J]. The Journal of Physical Chemistry B, 118, 8313-8329(2014).

    [44] Zhang O M, Lu J, Ding T B et al. Imaging the three-dimensional orientation and rotational mobility of fluorescent emitters using the Tri-spot point spread function[J]. Applied Physics Letters, 113, 031103(2018).

    [45] Ding T B, Lew M D. Single-molecule localization microscopy of 3D orientation and anisotropic wobble using a polarized vortex point spread function[J]. The Journal of Physical Chemistry B, 125, 12718-12729(2021).

    [46] Wu T T, Lu J, Lew M D. Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules[J]. Optica, 9, 505-511(2022).

    [47] Zhang O M, Guo Z J, He Y Y et al. Six-dimensional single-molecule imaging with isotropic resolution using a multi-view reflector microscope[J]. Nature Photonics, 17, 179-186(2023).

    [48] Ding T B, Wu T T, Mazidi H et al. Single-molecule orientation localization microscopy for resolving structural heterogeneities between amyloid fibrils[J]. Optica, 7, 602-607(2020).

    [49] Mazidi H, King E S, Zhang O M et al. Dense super-resolution imaging of molecular orientation via joint sparse basis deconvolution and spatial pooling[C], 325-329(2019).

    [50] Zhang O M, Zhou W Y, Lu J et al. Resolving the three-dimensional rotational and translational dynamics of single molecules using radially and azimuthally polarized fluorescence[J]. Nano Letters, 22, 1024-1031(2022).

    [51] Sarkar A, Namboodiri V, Kumbhakar M. Single-molecule orientation imaging reveals two distinct binding configurations on amyloid fibrils[J]. The Journal of Physical Chemistry Letters, 14, 4990-4996(2023).

    [52] Zhanghao K, Chen L, Yang X S et al. Super-resolution dipole orientation mapping via polarization demodulation[J]. Light, Science & Applications, 5, e16166(2016).

    [53] Zhanghao K, Chen X Y, Liu W H et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy[J]. Nature Communications, 10, 4694(2019).

    [54] Li Y N, Cao R J, Ren W et al. High-speed autopolarization synchronization modulation three-dimensional structured illumination microscopy[J]. Advanced Photonics Nexus, 3, 016001(2023).

    [55] Zhanghao K, Liu W H, Li M Q et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes[J]. Nature Communications, 11, 5890(2020).

    [56] Dong B, Pei Y C, Mansour N et al. Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging[J]. Nature Communications, 10, 4815(2019).

    [57] Mortensen K I, Sung J, Flyvbjerg H et al. Optimized measurements of separations and angles between intra-molecular fluorescent markers[J]. Nature Communications, 6, 8621(2015).

    [58] Mora A K, Nath S. SYPRO Orange-a new gold standard amyloid probe[J]. Journal of Materials Chemistry B, 8, 7894-7898(2020).

    [59] Jones S A, Shim S H, He J et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 8, 499-508(2011).

    [60] Henriques R, Griffiths C, Hesper Rego E et al. PALM and STORM: Unlocking live-cell super-resolution[J]. Biopolymers, 95, 322-331(2011).

    [61] Luo T D, Li Y M. Deep learning in single-molecule localization microscopy[J]. Chinese Journal of Lasers, 49, 2407206(2022).

    [62] Hou M D, Hu F, Yang J Y et al. Screening and reconstruction for single-molecular localization superresolution images of nuclear pore complexes[J]. Chinese Journal of Lasers, 51, 0307106(2024).

    [63] Wu T T, Lu P, Rahman M A et al. Deep-SMOLM: deep learning resolves the 3D orientations and 2D positions of overlapping single molecules with optimal nanoscale resolution[J]. Optics Express, 30, 36761-36773(2022).

    [64] Saguy A, Alalouf O, Opatovski N et al. DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning[J]. Nature Methods, 20, 1939-1948(2023).

    [65] Auer A, Strauss M T, Schlichthaerle T et al. Fast, background-free DNA-PAINT imaging using FRET-based probes[J]. Nano Letters, 17, 6428-6434(2017).

    [66] Ostersehlt L M, Jans D C, Wittek A et al. DNA-PAINT MINFLUX nanoscopy[J]. Nature Methods, 19, 1072-1075(2022).

    Tools

    Get Citation

    Copy Citation Text

    Ruihang Zhao, Jin Lu. Three-Dimensional Orientation and Localization Microscopy of Single Molecules Using Super-Resolution Imaging Technology (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Dec. 22, 2023

    Accepted: Feb. 18, 2024

    Published Online: Mar. 20, 2024

    The Author Email: Lu Jin (luj@nanoctr.cn)

    DOI:10.3788/LOP232713

    Topics