Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1335(2024)
Microstructure and Energy Storage Performance of (1-x)(0.75K0.5Bi0.5TiO3-0.25BiFeO3)-xNa0.73Bi0.09NbO3 Ceramics
[1] [1] MONTECILLO R, CHEN C S, LEE Y T, et al. Optimized electric-energy storage in BiFeO3-BaTiO3 ceramics via tailoring microstructure and nanocluster[J]. J Eur Ceram Soc, 2023, 43(5): 1941-1951.
[2] [2] JIANG J, MENG X J, LI L, et al. Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering[J]. Energy Storage Mater, 2021, 43: 383-390.
[3] [3] SHI J P, CHEN X L, LI X, et al. Realizing ultrahigh recoverable energy density and superior charge-discharge performance in NaNbO3-based lead-free ceramics via a local random field strategy[J]. J Mater Chem C, 2020, 8(11): 3784-3794.
[4] [4] ZHAO J H, BAO S H, TANG L M, et al. Improved energy storage performances of lead-free BiFeO3-based ceramics via doping Sr0.7La0.2TiO3[J]. J Alloys Compd, 2022, 898: 162795.
[5] [5] WANG W, MENG K, GE P Z, et al. Paraelectric matrix-tuned energy storage in BiFeO3-BaTiO3-SrTiO3 relaxor ferroelectrics[J]. ACS Appl Energy Mater, 2021, 4(9): 9216-9226.
[6] [6] CHANG C J, QI X D. Dielectric relaxation and high recoverable energy density in (1-x)(0.3BiFeO3-0.7SrTiO3)-xK0.5Na0.5NbO3 ceramics[J]. Ceram Int, 2022, 48(17): 25610-25620.
[7] [7] ZENG D F, DONG Q P, NONG P, et al. Achieving high energy storage density in BaTiO3-(Bi0.5Li0.5)(Ti0.5Sn0.5)O3 lead-free relaxor ferroelectric ceramics[J]. J Alloys Compd, 2023, 937: 168455.
[8] [8] WEI F B, YANG Y L, ZHANG L Y, et al. Simultaneously achieving high energy storage performance and low electrostrictive strain in BT-based ceramics[J]. J Am Ceram Soc, 2023, 106(6): 3491-3500.
[9] [9] WANG C Y, LIANG C, CAO W J, et al. Boosting energy-storage efficiency and thermal stability via defect dipoles in BaTiO3-based lead-free ceramics[J]. Ceram Int, 2023, 49(9): 13330-13338.
[10] [10] WENG N, ZHANG J, WANG J J, et al. Electrostatic energy storage performances of La(Ni2/3Ta1/3)O3-modified Na0.5Bi0.5TiO3 lead-free ceramics[J]. J Am Ceram Soc, 2023, 106(5): 2963-2971.
[11] [11] WANG K Y, LI W H, TANG X G, et al. High recoverable energy storage density of Na0.5Bi0.5TiO3 lead-free ceramics modified by Bi(Mg0.5Hf0.5)O3[J]. J Adv Dielect, 2023, 13(3): 2350008.
[12] [12] SU Y C, ZHOU X F, XUE G L, et al. Temperature-stable Na0.5Bi0.5TiO3-based ceramics with favorable low-temperature dielectric and energy storage property[J]. J Am Ceram Soc, 2023, 106(6): 3525-3536.
[13] [13] SINGH A, KHARANGARH P, GUPTA V. Enhanced energy storage efficiency with superior thermal stability under low electric field and large electric field driven strain in environment-friendly Bi0.5Na0.5TiO3 based ferroelectric modified with LiNbO3[J]. J Alloys Compd, 2023, 945: 169181.
[14] [14] YANG Q, ZHU M K, WEI Q M, et al. Excellent energy storage performance of K0.5Bi0.5TiO3-based ferroelectric ceramics under low electric field[J]. Chem Eng J, 2021, 414: 128769.
[15] [15] WEI Y X, ZHANG N, JIN C Q, et al. A Bi1/2K1/2TiO3-based ergodic relaxor ceramic for temperature-stable energy storage applications[J]. Mater Des, 2021, 207: 109887.
[16] [16] CHEN L, LONG F X, QI H, et al. Outstanding energy storage performance in high-hardness (Bi0.5K0.5)TiO3-based lead-free relaxors via multi-scale synergistic design[J]. Adv Funct Mater, 2022, 32(9): 2110478.
[17] [17] SHI W J, ZHANG L Y, JING R Y, et al. Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics[J]. J Eur Ceram Soc, 2022, 42(11): 4528-4538.
[18] [18] LIU S, FENG W W, LI J H, et al. Obtaining high energy storage performance and thermal stability simultaneously in BiFeO3-BaTiO3-Bi2LaTiNbO9 lead-free relaxor ferroelectric ceramics[J]. Ceram Int, 2023, 49(7): 11249-11256.
[19] [19] GUO H T, ZENG F F, XIAO W R, et al. Optimized energy storage performance in BF-BT-based lead-free ferroelectric ceramics with local compositional fluctuation[J]. J Eur Ceram Soc, 2023, 43(11): 4774-4781.
[20] [20] ZHU C H, YE W B, ZHENG P, et al. Fantastic energy storage performances and excellent stability in BiFeO3-SrTiO3-based relaxor ferroelectric ceramics[J]. ACS Appl Energy Mater, 2022, 5(7): 8492-8500.
[21] [21] ZHANG K, ZHENG P, ZHANG H F, et al. Excellent energy storage performance of paraelectric Ba0.4Sr0.6TiO3 based ceramics through induction of polar nano-regions[J]. Ceram Int, 2022, 48(14): 19864-19873.
[22] [22] LUO C, ZHENG X T, ZHENG P, et al. Realizing excellent energy storage performances in tetragonal tungsten bronze ceramics via a B-site engineering strategy[J]. J Alloys Compd, 2023, 933: 167809.
[23] [23] XI J W, XING J, CHEN H, et al. Crystal structure and electrical properties of Li/Mn Co-doped NBT-based Aurivillius-type ceramics[J]. J Alloys Compd, 2021, 868: 159216.
[24] [24] ZHAO X Y, BAI W F, DING Y Q, et al. Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics[J]. J Eur Ceram Soc, 2020, 40(13): 4475-4486.
[25] [25] NIU Z, ZHENG P, XIAO Y, et al. Bi0·5K0·5TiO3-based lead-free relaxor ferroelectric with high energy storage performances via the grain size and bandgap engineering[J]. Mater Today Chem, 2022, 24: 100898.
[26] [26] SHI J P, CHEN X L, SUN C C, et al. Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics[J]. Ceram Int, 2020, 46(16): 25731-25737.
[27] [27] QIN Y F, YANG J, HUANG W J, et al. Effects of Co doping on structural, magnetic, and electrical properties of 0.6BiFeO3-0.4(Bi0.5K0.5)TiO3 solid solution[J]. J Alloys Compd, 2018, 730: 119-126.
[28] [28] ZHANG X Z, YE W B, BU X Y, et al. Remarkable capacitive performance in novel tungsten bronze ceramics[J]. Dalton Trans, 2021, 50(1): 124-130.
[29] [29] ZHU X P, GAO Y F, SHI P, et al. Ultrahigh energy storage density in (Bi0.5Na0.5)0.65Sr0.35TiO3-based lead-free relaxor ceramics with excellent temperature stability[J]. Nano Energy, 2022, 98: 107276.
[30] [30] BAI X Z, CHEN Z T, ZHENG P, et al. High recoverable energy storage density in nominal (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 lead-free composite ceramics[J]. Ceram Int, 2021, 47(16): 23116-23123.
[31] [31] LIU S, FENG W W, LI J H, et al. Realizing excellent energy storage performance and fatigue endurance in Sr0.7Sm0.2TiO3 modified 0.67BiFeO3-0.33BaTiO3 lead-free relaxor ceramics[J]. J Eur Ceram Soc, 2022, 42(16): 7430-7440.
[32] [32] KANG F, ZHANG L X, YANG W J, et al. Achieving ultrahigh energy storage performance in BiFeO3-BaTiO3 based lead free relaxors via a composition optimization strategy[J]. J Eur Ceram Soc, 2022, 42(15): 6958-6967.
[33] [33] QI H, XIE A W, TIAN A, et al. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics[J]. Adv Energy Mater, 2020, 10(6): 1903338.
[34] [34] ZHANG M, YANG H B, LIN Y, et al. Significant increase in comprehensive energy storage performance of potassium sodium niobate-based ceramics via synergistic optimization strategy[J]. Energy Storage Mater, 2022, 45: 861-868.
[35] [35] PAN H, MA J, MA J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering[J]. Nat Commun, 2018, 9(1): 1813.
[36] [36] ZHANG M, YANG H B, YU Y W, et al. Energy storage performance of K0.5Na0.5NbO3-based ceramics modified by Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3[J]. Chem Eng J, 2021, 425: 131465.
[37] [37] LI F, ZHAI J W, SHEN B, et al. Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2□0.1)TiO3 ergodic relaxor ceramics[J]. Mater Res Lett, 2018, 6(7): 345-352.
[38] [38] HU D, PAN Z B, ZHANG X, et al. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT-BKT-based ceramics[J]. J Mater Chem C, 2020, 8(2): 591-601.
[39] [39] QIN C, SHEN Z Y, LUO W Q, et al. Effect of excess Bi on the structure and electrical properties of CaBi2Nb2O9 ultrahigh temperature piezoceramics[J]. J Mater Sci Mater Electron, 2018, 29(9): 7801-7804.
[40] [40] YANG Z Q, WANG B, LI Y Z, et al. Enhancement of nonlinear dielectric properties in BiFeO3-BaTiO3 ceramics by Nb-doping[J]. Materials, 2022, 15(8): 2872.
[41] [41] GUAN Z N, YAN Y M, MA J J, et al. Significantly enhanced energy storage performance of lead-free BiFeO3-based ceramics via synergic optimization strategy[J]. ACS Appl Mater Interfaces, 2022, 14(39): 44539-44549.
[42] [42] CUI T, ZHANG J, GUO J, et al. Simultaneous achievement of ultrahigh energy storage density and high efficiency in BiFeO3-based relaxor ferroelectric ceramics via a highly disordered multicomponent design[J]. J Mater Chem A, 2022, 10(27): 14316-14325.
Get Citation
Copy Citation Text
SHENG Linsheng, SHEN Chao, JIANG Mengqi, YANG Guang, ZHENG Peng, BAI Wangfeng. Microstructure and Energy Storage Performance of (1-x)(0.75K0.5Bi0.5TiO3-0.25BiFeO3)-xNa0.73Bi0.09NbO3 Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1335
Category:
Received: Sep. 29, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Peng ZHENG (zhengpeng@hdu.edu.cn)