Acta Photonica Sinica, Volume. 45, Issue 3, 330003(2016)
Kernel Anomaly Detection Method in Hyperspectral Imagery Based on the Spectral Discrimination Method
[1] [1] DU B, ZHANG L. A discriminative metric learning based anomaly detection method[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(11): 6844-6857.
[2] [2] DU B, ZHANG L. Target detection based on a dynamic subspace[J]. Pattern Recognition, 2014, 47(1):344-358.
[3] [3] SCHAUM A. Spectral subspace matched filtering[C]. Proceedings of the SPIE-the International Society for Optical Engineering, 2001, 4381: 1 17
[4] [4] HARSANYI J C, CHANG C I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach[J]. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(4): 779-785.
[5] [5] DU B, ZHANG Y, ZHANG L, et al. A hypothesis independent subpixel target detector for hyperspectral images[J]. Signal Processing, 2015, 110: 244-249.
[6] [6] REED I S,YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Tran Sactions on Acoustics Speech and Signal Processing, 1990, 38(10):1760-1770.
[7] [7] HEESUNG K, NASRABADI N M. Kernel RX-algorithm:anonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2):388-397.
[8] [8] MEI Feng, ZHAO Chun-hui, SUN Yan, et al. A novel spectral similarity measurement kernel based anomaly detection method in hyperspectral imagery[J]. Acta Photonica Sinica, 2009, 18(5):3165-3170.
[10] [10] WANG Liang-liang, LI Zhi-yong, SUN Ji-xiang. Anomaly detection in hyperspectral imagery based on spectral gradient and LLE[J]. Applied Mechanics and Materials, 2012, 121(10) : 720-724
[11] [11] WANG Liang-liang, LI Zhi-yong, SUN Ji-xiang. Improved RX algorithm with global statistics[J]. Applied Mechanics and Materials, 2014, 446(11) :942-945
[12] [12] MEI Feng, ZHAO Chun-hui. Spatial filter based anomaly detection algorithm for hyperspectral imagery kernel RX detectors[J]. Journal of Harbin Engineering University, 2009, 30(6):697-702.
[13] [13] SCHOLKOPF B, SMOLA A J, MULLER K. Nonlinear component analysis a Kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5):1299-1319.
[14] [14] ZHAO Chun-hui, LI Jie, MEI Feng. A kernel weighted RX algorithm for anomaly detection in hyperspectral imagery[J]. Iournal of Infrared and Millimeter Waves, 2010, 29(5):378-382.
Get Citation
Copy Citation Text
REN Xiao-dong, LEI Wu-hu. Kernel Anomaly Detection Method in Hyperspectral Imagery Based on the Spectral Discrimination Method[J]. Acta Photonica Sinica, 2016, 45(3): 330003
Received: Aug. 29, 2015
Accepted: --
Published Online: Apr. 1, 2016
The Author Email: Xiao-dong REN (rxd116man@163.com)