Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2425(2024)
Recent Progress on Solvents for Growth of 4H-SiC Single Crystals by High-Temperature Solution Growth Technique
[1] [1] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Jpn J Appl Phys, 2015, 54(4): 040103.
[2] [2] HAMADA K, NAGAO M, AJIOKA M, et al. SiC—Emerging power device technology for next-generation electrically powered environmentally friendly vehicles[J]. IEEE Trans Electron Devices, 2014, 62(2): 278-285.
[3] [3] PONS M, ANIKIN M, CHOUROU K, et al. State of the art in the modelling of SiC sublimation growth[J]. Mater Sci Eng B, 1999, 61: 18-28.
[4] [4] KORDINA O, HALLIN C, ELLISON A, et al. High temperature chemical vapor deposition of SiC[J]. Appl Phys Lett, 1996, 69(10): 1456-1458.
[5] [5] KUSUNOKI K, SEKI K, KISHIDA Y, et al. Development of high quality 4H-SiC single crystal wafers grown by solution growth technique[J]. Nippon Steel &Sumimoto Metal Technical Report, 2017: 50-57.
[6] [6] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[C]// Materials Science Forum. Trans Tech Publications Ltd, 2016, 858: 5-10.
[7] [7] HAN R, XU X, HU X, et al. Development of bulk SiC single crystal grown by physical vapor transport method[J]. Opt Mater, 2003, 23(1/2): 415-420.
[8] [8] PATEL A, MITTAL M, RAO D V S, et al. Syntaxy and defect distribution during the bulk growth of 4H-SiC Single crystal[J]. J Mater Sci, 2021, 32: 2187-2192.
[9] [9] NAM D H, KIM B G, YOON J Y, et al. High-temperature chemical vapor deposition for SiC single crystal bulk growth using tetramethylsilane as a precursor[J]. Cryst Growth Des, 2014, 14(11): 5569-5574.
[10] [10] TOKUDA Y, MAKINO E, SUGIYAMA N, et al. Stable and high-speed SiC bulk growth without dendrites by the HTCVD method[J]. J Cryst Growth, 2016, 448: 29-35.
[11] [11] YAMAMOTO Y, HARADA S, SEKI K, et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method[J]. Appl Phys Express, 2014, 7(6): 065501.
[12] [12] TAMURA Y, SAKAKIMA H, TAKAMOTO S, et al. Reaction pathway analysis for the conversion of perfect screw basal plane dislocation to threading edge dislocation in 4H-SiC[J]. Jpn J Appl Phys, 2019, 58(8): 081005.
[13] [13] HARADA S, YAMAMOTO Y, SEKI K, et al. Reduction of threading screw dislocation utilizing defect conversion during solution growth of 4H-SiC[C]// Materials Science Forum. Trans Tech Publications Ltd, 2013, 740: 189-192.
[14] [14] GRIFFITHS L B, MLAVSKY A I. Growth of α‐SiC Single Crystals from Chromium Solution[J]. J Electrochem Soc, 1964, 111(7): 805.
[15] [15] MARSHALL R C. Growth of silicon carbide from solution[M]. Silicon Carbide-1968, Elsevier, 1969: S73-S84.
[16] [16] PELLEGRINI P W, FELDMAN J M. Liquid phase epitaxial growth of SiC from transition-metal silicide solvents[J]. J Cryst Growth, 1974, 27: 320-324.
[17] [17] TAIROV Y M, TSVETKOV V F. Investigation of growth processes of ingots of silicon carbide single crystals[J]. J Cryst Growth, 1978, 43(2): 209-212.
[18] [18] ZIEGLER G, LANIG P, THEIS D, et al. Single crystal growth of SiC substrate material for blue light emitting diodes[J]. IEEE Trans Electron Devices, 1983, 30(4): 277-281.
[19] [19] TAKAHASHI J, OHTANI N, KANAYA M. Structural defects in α-SiC single crystals grown by the modified-Lely method[J]. J Cryst Growth, 1996, 167(3/4): 596-606.
[20] [20] SUGIYAMA N, OKAMOTO A, OKUMURA K, et al. Step structures and dislocations of SiC single crystals grown by modified Lely method[J]. J Cryst Growth, 1998, 191(1/2): 84-91.
[21] [21] ROST H J, SICHE D, DOLLE J, et al. Influence of different growth parameters and related conditions on 6H-SiC crystals grown by the modified Lely method[J]. Mater Sci Eng B, 1999, 61: 68-72.
[22] [22] MüLLER M, BICKERMANN M, HOFMANN D, et al. Studies on SiC liquid phase crystallization as technique for SiC bulk growth[C] // Materials Science Forum. 1998, 264.
[23] [23] SYV?J?RVI M, YAKIMOVA R, RADAMSON H H, et al. Liquid phase epitaxial growth of SiC[J]. J Cryst Growth, 1999, 197(1/2): 147-154.
[24] [24] HOFMANN D H, MüLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals[J]. Mater Sci Eng B, 1999, 61: 29-39.
[25] [25] KUSUNOKI K, MUNETOH S, KAMEI K, et al. Solution growth of self-standing 6H-SiC single crystal using metal solvent[C] // Materials Science Forum. Trans Tech Publications Ltd, 2004, 457: 123-126.
[26] [26] NARUMI T, KAWANISHI S, YOSHIKAWA T, et al. Thermodynamic evaluation of the C-Cr-Si, C-Ti-Si, and C-Fe-Si systems for rapid solution growth of SiC[J]. J Cryst Growth, 2014, 408: 25-31.
[27] [27] MITANI T, KOMATSU N, TAKAHASHI T, et al. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions[J]. J Cryst Growth, 2014, 401: 681-685.
[28] [28] HARADA S, HATASA G, MURAYAMA K, et al. Solvent design for high-purity SiC solution growth[C] // Materials Science Forum. Trans Tech Publications Ltd, 2017, 897: 32-35.
[29] [29] HYUN K Y, TAISHI T, SUZUKI K, et al. Experimental determination of carbon solubility in Si0.56Cr0.4M0.04 (M=transition metal) solvents for solution growth of SiC[C] // Materials Science Forum. Trans Tech Publications Ltd, 2018, 924: 43-46.
[30] [30] KAWANISHI S, YOSHIKAWA T. Measurement and Thermodynamics of Carbon Solubilities in Molten Si-Fe, Si-Ni, and Si-Cr-Fe Alloys at 2073 K[J]. ISIJ Int, 2020, 60(10): 2123-2128.
[31] [31] KAWANISHI S, NAGAMATSU Y, YOSHIKAWA T, et al. Availability of Cr-rich Cr-Si solvent for rapid solution growth of 4H-SiC[J]. J Cryst Growth, 2020, 549: 125877.
[32] [32] DAIKOKU H, KAWANISHI S, ISHIKAWA T, et al. Density, surface tension, and viscosity of liquid Si-Cr alloys and influence on temperature and fluid flow during solution growth of SiC[J]. J Chem Thermodyn, 2021, 160: 106476.
[33] [33] GUO L, WANG G, LIN J, et al. Enhanced carbon solubility in solvent for SiC rapid solution growth: Thermodynamic evaluation of Cr-Ce-Si-C system[J]. J Rare Earth, 2023, 41(8): 1272-1278.
[34] [34] KUSUNOKI K, KAMEI K, UEDA Y, et al. Crystalline quality evaluation of 6H-SiC bulk crystals grown from Si-Ti-C ternary solution[C] // Materials Science Forum. Trans Tech Publications Ltd, 2005, 483: 13-16.
[35] [35] KAMEI K, KUSUNOKI K, YASHIRO N, et al. Solution growth of single crystalline 6H, 4H-SiC using Si-Ti-C melt[J]. J Cryst Growth, 2009, 311(3): 855-858.
[36] [36] KUSUNOKI K, YASHIRO N, OKADA N, et al. Growth of large diameter 4H-SiC by TSSG technique[C] // Materials Science Forum. Trans Tech Publications Ltd, 2013, 740: 65-68.
[37] [37] KUSUNOKI K, KAMEI K, SEKI K, et al. Nitrogen doping of 4H-SiC by the top-seeded solution growth technique using Si-Ti solvent[J]. J Cryst Growth, 2014, 392: 60-65.
[38] [38] YOSHIKAWA T, KAWANISHI S, TANAKA T. Solution growth of silicon carbide using Fe-Si solvent[J]. Jpn J Appl Phys, 2010, 49(5R): 051302.
[39] [39] KAWANISHI S, YOSHIKAWA T, MORITA K, et al. Solution growth behavior of SiC by a temperature difference method using Fe-Si solvent[J]. J Cryst Growth, 2013, 381: 121-126.
[40] [40] GAO M X, PAN Y, OLIVEIRA F J, et al. The growth of SiC crystals from CoSi molten alloy fluxes[C] // Materials science forum. Trans Tech Publications Ltd, 2006, 514: 343-347.
[41] [41] LI P, LEI M, MA W, et al. Promising Approach for Rapid Growth of High-Quality SiC Crystals Using Si-Nd-C Solutions[J]. Cryst Growth Des, 2023, 23: 5173-5180.
[42] [42] MITANI T, KOMATSU N, TAKAHASHI T, et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution[J]. J Cryst Growth, 2015, 423: 45-49.
[43] [43] KOMATSU N, MITANI T, HAYASHI Y, et al. Modification of the surface morphology of 4H-SiC by addition of Sn and Al in solution growth with SiCr solvents[J]. J Cryst Growth, 2017, 458: 37-43.
[44] [44] HYUN K, KIM S J, TAISHI T. Effect of cobalt addition to Si-Cr solvent in top-seeded solution growth[J]. Appl Surf Sci, 2020, 513: 145798.
[45] [45] ZHANG Zesheng. Studies of solution growth and properties of SiC crystal[D]. Beijing: University of Chinese Academy of Sciences, 2020.
[46] [46] WELLMANN P J. Power electronic semiconductor materials for automotive and energy saving applications-SiC, GaN, Ga2O3, and diamond[J]. Z Anog Allg Chem, 2017, 643(21): 1312-1322.
[47] [47] ZHANG F, DU Y, LIU S, et al. Modeling of the viscosity in the AL-Cu-Mg-Si system: Database construction[J]. Calphad, 2015, 49: 79-86.
[48] [48] TORAB-MOSTAEDI M, ASADOLLAHZADEH M, SAFDARI J. Prediction of mass transfer coefficients in an asymmetric rotating disk contactor using effective diffusivity[J]. Chin J Chem Eng, 2017, 25(3): 288-293.
[49] [49] KELLY A G, O’SUILLEABHAIN D, GABBETT C, et al. The electrical conductivity of solution-processed nanosheet networks[J]. Nat Rev Mater, 2022, 7(3): 217-234.
[50] [50] WANG G, SHENG D, LI H, et al. Influence of interfacial energy on the growth of SiC single crystals from high temperature solutions[J]. Cryst Eng Comm, 2023, 25(4): 560-566.
[51] [51] KAWANISHI S, ABE M, KOYAMA C, et al. Measurement of thermophysical properties of molten Si-Cr and Si-Fe alloys for design of solution growth of SiC[J]. J Cryst Growth, 2020, 541: 125658.
[52] [52] KOMATSU N, MITANI T, HAYASHI Y, et al. Influence of additives on surface smoothness and polytype stability in solution growth of n-type 4H-SiC[C] // Materials Science Forum. Trans Tech Publications Ltd, 2018, 924: 55-59.
[53] [53] XIAO S, HARA N, HARADA S, et al. Research on solvent composition for different surface morphology on C face during 4H-SiC solution growth[C] // Materials Science Forum. Trans Tech Publications Ltd, 2015, 821: 39-42.
[54] [54] SUZUKI K, TAISHI T. The effect of Al addition to a Cr solvent without molten Si on the surface morphology in a solution growth of SiC[J]. Jpn J Appl Phys, 2020, 59(2): 025504.
[55] [55] KOMATSU N, MITANI T, TAKAHASHI T, et al. Change in Surface Morphology by Addition of Impurity Elements in 4H-SiC Solution Growth with Si Solvent[J]. Materials Science Forum, 2015, 4007(821-823): 14-17.
[56] [56] SANTOS M S C S, REIS J C R. Examination of the Butler Equation for the Surface Tension of Liquid Mixtures[J]. ACS Omega, 2021, 6(33): 21571-21578.
[57] [57] ALJARRAH M, OMARI M, ALKHAZALI A. On the Choice of the Geometrical Extrapolation Models for the Mg-Al-Sr System Based on Experimental Investigation[J]. Mat Res, 2020, 23: e20200284.
[58] [58] ZHUANG H Z, ZOU X W, JIN Z Z, et al. Are Guggenheim formulae and Landau theory still applicable to expanded liquid metals?[J]. Phys B: Condens Matter, 1998, 245(2): 110-113.
[59] [59] MARLA D, BHANDARKAR U V, JOSHI S S. Models for predicting temperature dependence of material properties of aluminum[J]. J Phys D: Appl Phys, 2014, 47(10): 105306.
[60] [60] PINHASI G A, ULLMANN A, DAYAN A. 1D plane numerical model for boiling liquid expanding vapor explosion (BLEVE)[J]. Int J Heat Mass Transf, 2007, 50(23/24): 4780-4795.
[61] [61] KAWANISHI S, YOSHIKAWA T, SHIBATA H. Thermomigration of molten Cr-Si-C alloy in 4H-SiC at 1873-2273 K[J]. J Cryst Growth, 2019, 518: 73-80.
[62] [62] SAKSENA HARMINDER M P. Thermal conductivity of binary liquid mixtures[J]. Chem Phys Lett, 1974, 25: 445-448.
[63] [63] ZHANG J, YIN W A N, DING L I U, et al. Optimization of control parameters in microdefect Czochralski monocrystalline silicon growth[C] // 2018 Chinese Automation Congress (CAC). IEEE, 2018: 2106-2110.
[64] [64] NARUMI T, SHIBUTA Y, YOSHIKAWA T. Molecular Dynamics Study of the Effect of Carbon Atoms on the Surface Tension of Silicon-carbon Alloy[J]. ISIJ Int, 2020, 60(2): 199-204.
[65] [65] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1): 1-19.
[66] [66] RULISON A J, RHIM W K. A noncontact measurement technique for the specific heat and total hemispherical emissivity of undercooled refractory materials[J]. Rev Sci Instrum, 1994, 65(3): 695-700.
[67] [67] NISHI T, SHIBATA H, OHTA H. Thermal diffusivities and conductivities of molten germanium and silicon[J]. Mater Trans, 2003, 44(11): 2369-2374.
[68] [68] PARKER W J, JENKINS R J, BUTLER C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. J Appl Phys, 1961, 32(9): 1679-1684.
[69] [69] TAKAHASHI Y, AZUMI T, KANNO M. Improvements on Laser-Flash, Thermal Diffusivity Measurement (I) A New Isoperibol Type Apparatus and Heat-Loss Correction[J]. Netsu Sokutei, 1981, 8(2): 62-66.
[70] [70] OHTA H, WASEDA Y. Measurement of thermal diffusivity of inorganic materials at elevated temperature by laser flash method[J]. High Temp Mater Processes, 1986, 7(2/3): 179-184.
[71] [71] DAIKOKU H, KAWANISHI S, YOSHIKAWA T. Measurement and thermodynamic analysis of carbon solubility in Si-Cr alloys at SiC saturation[J]. Mater Trans, 2017, 58(10): 1434-1438.
[72] [72] DING M S. Thermodynamic analysis of phase diagrams of binary carbonates based on a regular solution model[J]. J Electrochem Soc, 2002, 149(8): A1063.
[73] [73] LAWRENCE R, LAVIOLETTE P R A. Quasi-chemical theories of associated liquids[J]. Mol Phys, 1998, 94(6): 909-915.
[74] [74] PRATT L R, REMPE S B. Quasi-chemical theory and implicit solvent models for simulations[C] // AIP Conference Proceedings. American Institute of Physics, 1999, 492(1): 172-201.
[75] [75] PELTON A D, CHARTRAND P. The modified quasi-chemical model: Part II. Multicomponent solutions[J]. Metall Mater Trans A, 2001, 32: 1355-1360.
[76] [76] TENG L D, LU K G, AUNE R E, et al. Thermodynamic investigations of Cr 3 C 2 and reassessment of the Cr-C system[J]. Metall Mater Trans, 2004, 35: 3673-3680.
[77] [77] NARAGHI R, SELLEBY M, ?GREN J. Thermodynamics of stable and metastable structures in Fe-C system[J]. Calphad, 2014, 46: 148-158.
[78] [78] KAWANISHI S, YOSHIKAWA T, TANAKA T. Equilibrium phase relationship between SiC and a liquid phase in the Fe-Si-C system at 1523-1723 K[J]. Mater Trans, 2009, 50(4): 806-813.
[79] [79] ZUBKO E, OVCHARENKO A, BONDARENKO S, et al. Backscattering of agglomerate particles[C]//London, United Kingdom, 2004: 407.
[80] [80] COUGHANOWR C A, ANSARA I, LUKAS H L. Assessment of the Cr-Si System[J]. Calphad, 1994, 18: 125-140.
[81] [81] HULTGREN R, DESAI P D, HAWKINS D T, et al. Selected Vales of the Thermodynamic Properties of Binary Alloys, 1973, 231.
[82] [82] WASEDA Y, TOKUDA M, OHTANI M. The structure of molten Fe and Fe-C alloys by X-ray diffraction[J]. Tetsu-to-Hagane, 1975, 61(1): 54-70.
[83] [83] HIGUCHI K, KIMURA K, MIZUNO A, et al. Precise measurement of density and structure of undercooled molten silicon by using synchrotron radiation combined with electromagnetic levitation technique[J]. Meas Sci Technol, 2005, 16(2): 381-385.
[84] [84] KITA Y, ZEZE M, MORITA Z. Structural analysis of molten Fe-Si alloys by X-ray diffraction[J]. Trans Iron Steel Inst Jpn, 1982, 22(8): 571-576.
[85] [85] WASEDA Y, TAMAKI S. The structures of 3d-transition metals in the liquid state[J]. Philos Mag, 1975, 32(2): 273-281.
[86] [86] JACOB K T, ALCOCK C B. Quasichemical equations for oxygen and sulphur in liquid binary alloys[J]. Acta Metall, 1972, 20(2): 221-232.
[87] [87] QIU Peng. Preparation of SiC single crystals by rare earth metal co-solvent method Basic research in chemistry[D]. Kunming: Kunming University of Science and Technology, 2020.
[88] [88] BALE C W, CHARTRAND P, DEGTEROV S A, et al. FactSage thermochemical software and databases[J]. Calphad, 2002, 26(2): 189-228.
Get Citation
Copy Citation Text
DING Xiang, QIAN Hao, LIANG Gangqiang, CHEN Yawei, LIU Yuan. Recent Progress on Solvents for Growth of 4H-SiC Single Crystals by High-Temperature Solution Growth Technique[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2425
Category:
Received: Feb. 23, 2024
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Yuan LIU (yuanliu@tsinghua.edu.cn)