Optics and Precision Engineering, Volume. 15, Issue 2, 267(2007)
Anti-occlusion arithmetic for moving object tracking
[2] [2] NUMMIARO K,KOLLER-MEIER E,van GOOL L.Color feature for tracking non-rigid objects[J].Acta Automatica Sinaca,2003,29(3):345-355.
[3] [3] ZHOU S K,CHELLAPPA R,MOGHADDAM B.Appearance tracking using adaptive models in a particle filter[C].Asian Conference on Computer Vision,2004(ACCV2004)
[4] [4] GENNARI G,HAGER G D.Probabilistic data association methods in visual tracking of groups[C].CVPR,2004.
[6] [6] SCOTT D W.Multivariate density estimation[M],NewYork:Niley,1992.
[7] [7] COMANICIU D,RAMESH V.Real-time track of non-rigid objects using mean shift[C].CVPR,2000.
[8] [8] COMANICIU D,MEER P.Mean shift:A robust approach toward feature space analysis[J].IEEE Trans.Pattern Anal.Mach.Intell.,2002,24(5).
[9] [9] COMANECI D,RAMESH V,MEER P.Kernel-based object tracking[C].Trans.Pattern Anal.Mach.Intell.,25,2003.
[10] [10] WELCH G,SISHOP G.An Introduction to the Kalman filter[M].UNC-Chapel Hill,TR,2004.
[11] [11] GREWAL M C,ANDREWS A P.Kalman filtering:theory and practice using MATLAB[M].Second Edition,2001:156-160.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese]. Anti-occlusion arithmetic for moving object tracking[J]. Optics and Precision Engineering, 2007, 15(2): 267