Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 1078(2023)

Recent Progress on Synthesis of New Superhard Amorphous Carbon Materials under High Pressure

SHANG Yuchen*... ZHANG Ying, YAO Mingguang and LIU Bingbing |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(58)

    [1] [1] PAN B T, XIAO J, LI J L, et al. Carbyne with finite length: The one-dimensional sp carbon[J]. Sci Adv, 2015, 1(9): e1500857.

    [2] [2] HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7504): 250-253.

    [3] [3] CHUNG D D L. Review graphite[J]. J Mater Sci, 2002, 37(8): 1475-1489.

    [4] [4] ROBERTSON J. Diamond-like amorphous carbon[J]. Mater Sci Eng R-Rep, 2002, 37(4-6): 129-281.

    [5] [5] SAUREL D, ORAYECH B, XIAO B W, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Adv Energy Mater, 2018, 8(17): 1703268.

    [7] [7] AISENBERG S, CHABOT R. Ion-beam deposition of thin films of diamond-like carbon[J]. J Appl Phys, 1971, 42(7): 2953-2958.

    [8] [8] TEO K B K, FERRARI A C, FANCHINI G, et al. Highest optical gap tetrahedral amorphous carbon[J]. Diam Relat Mater, 2002, 11(3-6): 1086-1090.

    [9] [9] ROBERTSON J. Plasma deposition of diamond-like carbon[J]. Jpn J Appl Phys, 2011, 50(1): 01AF01.

    [10] [10] MCKENZIE D R. Tetrahedral bonding in amorphous carbon[J]. Rep Prog Phys, 1996, 59(12): 1611-1664.

    [11] [11] BERTHIER L, BIROLI G. Theoretical perspective on the glass transition and amorphous materials[J]. Rev Mod Phys, 2011, 83(2): 587-645.

    [12] [12] WANG W H. The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Prog Mater Sci, 2012, 57(3): 487-656.

    [13] [13] BUNDY F P, BASSETT W A, WEATHERS M S, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994[J]. Carbon, 1996, 34(2): 141-153.

    [14] [14] ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures[J]. Nat Rev Mater, 2017, 2(4): 17005.

    [15] [15] KROTO H W, HEATH J R, O’BRIEN S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.

    [16] [16] RUOFF R S, RUOFF A L. Is C60 stiffer than diamond?[J]. Nature, 1991, 350(6320): 663-664.

    [17] [17] SUNDQVIST B. Fullerenes under high pressures[J]. Adv Phys, 1999, 48(1): 1-134.

    [18] [18] REGUEIRO M N, MONCEAU P, HODEAU J L. Crushing C60 to diamond at room temperature[J]. Nature, 1992, 355(6357): 237-239.

    [19] [19] LVAREZ-MURGA M, BLEUET P, GARBARINO G, et al. “Compressed graphite” formed during C60 to diamond transformation as revealed by scattering computed tomography[J]. Phys Rev Lett, 2012, 109(2): 025502.

    [20] [20] BLANK V D, POPOV M Y, BUGA S G, et al. Is C60 fullerite harder than diamond?[J]. Phys Lett A, 1994, 188(3): 281-286.

    [21] [21] MOSELER M, RIEDEL H, GUMBSCH P, et al. Understanding of the phase transformation from fullerite to amorphous carbon at the microscopic level[J]. Phys Rev Lett, 2005, 94(16): 165503.

    [22] [22] WANG L, LIU B B, LIU D D, et al. Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller[J]. Adv Mater, 2006, 18(14): 1883-1888.

    [23] [23] WANG L, LIU B B, YU S D, et al. Highly enhanced luminescence from single-crystalline C60.1m-xylene nanorods[J]. Chem Mater, 2006, 18(17): 4190-4194.

    [24] [24] YAO M G, FAN X H, LIU D D, et al. Synthesis of differently shaped C70 nano /microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence[J]. Carbon, 2012, 50(1): 209-215.

    [25] [25] LIU D D, CUI W, YAO M G, et al. Effects of alcohols on shape-tuning and luminescence-enhancing of C70 nanocrystals[J]. Opt Mater, 2013, 36(2): 449-454.

    [26] [26] WANG L, LIU B B, LI H, et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks[J]. Science, 2012, 337(6096): 825-828.

    [27] [27] YAO M G, CUI W, Du M R, et al. Tailoring building blocks and their boundary interaction for the creation of new, potentially superhard, carbon materials[J]. Adv Mater, 2015, 27(26): 3962-3968.

    [28] [28] YAO M G, CUI W, XIAO J P, et al. Pressure-induced transformation and superhard phase in fullerenes: The effect of solvent intercalation[J]. Appl Phys Lett, 2013, 103(7): 071913.

    [29] [29] CUI W, YAO M G, LIU S J, et al. A new carbon phase constructed by long-range ordered carbon clusters from compressing C70 solvates[J]. Adv Mater, 2014, 26(42): 7257-7263.

    [30] [30] DU M R, YAO M G, DONG J J, et al. New ordered structure of amorphous carbon clusters induced by fullerene-cubane reactions[J]. Adv Mater, 2018, 30(22): 1706916.

    [31] [31] ZHANG Y, YAO M G, DU M R, et al. Negative volume compressibility in Sc3N@C80 -cubane cocrystal with charge transfer[J]. J Am Chem Soc, 2020, 142(16): 7584-7590.

    [32] [32] CUI J X, YAO M G, YANG H, et al. Structural stability and deformation of solvated Sm@C2(42)-C90 under high pressure[J]. Sci Rep, 2016, 6(1): 31213.

    [33] [33] BLANK V D, BUGA S G, DUBITSKY G A, et al. High-pressure polymerized phases of C60[J]. Carbon, 1998, 36(4): 319-343.

    [34] [34] BLANK V D, BUGA S G, SEREBRYANAYAG N R, et al. Structures and physical properties of superhard and ultrahard 3D polymerized fullerites created from solid C60 by high pressure high temperature treatment[J]. Carbon, 1998, 36(5-6): 665-670.

    [35] [35] BLANK V D, BUGA S G, SEREBRYANAYA N R, et al. Ultrahard and superhard carbon phases produced from C60 by heating at high pressure: structural and Raman studies[J]. Phys Lett A, 1995, 205: 208-216.

    [36] [36] BLANK V D, DUBITSKY G A, SEREBRYANAYA N R, et al. Structure and properties of C60 and C70 phases produced under 15 GPa pressure and high temperature[J]. Physica B, 2003, 339(1): 39-44.

    [37] [37] Blank V D, BUGA S G, Dubitsky G A, et al. Synthesis of superhard and ultrahard materials by 3D-polymerization of C60, C70 fullerenes under high pressure (15 GPa) and temperatures up to 1820 K[J]. Z Naturforsch, 2006, 61b: 1547-1554.

    [38] [38] HIRAI H, KONDO K, YOSHIZAWA N, et al. Amorphous diamond from C60 fullerene[J]. Appl Phys Lett, 1994, 64(14): 1797-1799.

    [39] [39] HIRAI H, TERAUCHI M, TANAKA M, et al. Band gap of essentially fourfold-coordinated amorphous diamond synthesized from C60 fullerene[J]. Phys Rev B, 1999, 60(9): 6357-6361.

    [40] [40] SHANG Y C, LIU Z D, DONG J J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene[J]. Nature, 2021, 599(7886): 599-604.

    [41] [41] TOH C, Zhang H J, LIN J H, et al. Synthesis and properties of free-standing monolayer amorphous carbon[J]. Nature, 2020, 577(7789): 199-203.

    [42] [42] CHEN L J, CHENG S L, YU C H, et al. Structural evolution in amorphous silicon and germanium thin films[J]. Microsc Microanal, 2002, 8(4): 268-273.

    [43] [43] ZHANG S S, LI Z H, LUO K, et al. Discovery of carbon-based strongest and hardest amorphous material[J]. Natl Sci Rev, 2022, 9(1): nwab140.

    [44] [44] ZHANG S S, WU Y J, LUO K, et al. Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene[J]. Cell Rep Phys Sci, 2021, 2(9): 100565.

    [45] [45] TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond [J]. Nature, 2021, 599(7886): 605-610.

    [46] [46] TREACY M M J, GIBSON J M, KEBLINSKI P J. Paracrystallites

    [47] [47] TREACY M M J, BORISENKO K B. The local structure of amorphous silicon[J]. Science, 2012, 335(6071): 950-953.

    [48] [48] HARRIS P J F. Fullerene-related structure of commercial glassy carbons[J]. Philos Mag, 2004, 84(29): 3159-3167.

    [49] [49] LIN Y, ZHANG L, MAO H, et al. Amorphous diamond: a high-pressure superhard carbon allotrope[J]. Phys Rev Lett, 2011, 107(17): 175504.

    [50] [50] SOLOPOVA N A, DUBROVINSKAIA N, DUBROVINSKY L. Raman spectroscopy of glassy carbon up to 60 GPa[J]. Appl Phys Lett, 2013, 102(12): 121909.

    [51] [51] YAO M G, XIAO J P, FAN X H, et al. Transparent, superhard amorphous carbon phase from compressing glassy carbon[J]. Appl Phys Lett, 2014, 104(2): 021916.

    [52] [52] YAO M G, FAN X H, ZHANG W W, et al. Uniaxial-stress-driven transformation in cold compressed glassy carbon[J]. Appl Phys Lett, 2017, 111(10): 101901.

    [53] [53] WEN L B, SUN H. Understanding shear-induced sp2-to-sp3 phase transitions in glassy carbon at low pressure using first-principles calculations[J]. Phys Rev B, 2018, 98(1): 014103.

    [54] [54] WANG L L, ZHAO M. Structural and elastic properties of a hypothetical high density sp2-rich amorphous carbon phase[J]. J Chem Phys, 2014, 140(15): 154504.

    [55] [55] ZENG Z D, SHENG H W, YANG L X, et al. Structural transition in cold-compressed glassy carbon[J]. Phys Rev Mater, 2019, 3(3): 033608.

    [56] [56] TAN L J, SHENG H W, LOU H, B et al. High-pressure tetrahedral amorphous carbon synthesized by compressing glassy carbon at room temperature[J]. J Phys Chem C, 2020, 124(9): 5489-5494.

    [57] [57] SHIELL T B, MCCULLOCH D G, MCKENZIE D R, et al. Graphitization of glassy carbon after compression at room temperature[J]. Phys Rev Lett, 2018, 120(21): 215701.

    [58] [58] HU M, HE J L, ZHAO Z S, et al. Compressed glassy carbon: an ultrastrong and elastic interpenetrating graphene network[J]. Sci Adv, 2017, 3(6): e1603213.

    [59] [59] ZENG Z D, YANG L X, ZENG Q S, et al. Synthesis of quenchable amorphous diamond[J]. Nat Commun, 2017, 8(1): 322.

    Tools

    Get Citation

    Copy Citation Text

    SHANG Yuchen, ZHANG Ying, YAO Mingguang, LIU Bingbing. Recent Progress on Synthesis of New Superhard Amorphous Carbon Materials under High Pressure[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1078

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 18, 2023

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email: Yuchen SHANG (shangyc19@mails.jlu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics