Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0106004(2024)

Microfluidic Fiber Optic Sensors: from Functional Integration to Functional Design (Invited)

Tingting Yuan1, Xiaotong Zhang1, Xinghua Yang2, and Libo Yuan3、*
Author Affiliations
  • 1Center for Advanced Manufacturing and Future Industries, Future Technology School, Shenzhen University of Technology, Shenzhen 518118, Guangdong, China
  • 2Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • 3Photonics Research Center, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • show less
    References(122)

    [1] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 442, 381-386(2006).

    [2] Fan X D, Yun S H. The potential of optofluidic biolasers[J]. Nature Methods, 11, 141-147(2014).

    [3] Rodríguez-Ruiz I, Llobera A, Vila-Planas J et al. Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies[J]. Analytical Chemistry, 85, 9678-9685(2013).

    [4] Fan H C, Wang J B, Potanina A et al. Whole-genome molecular haplotyping of single cells[J]. Nature Biotechnology, 29, 51-57(2011).

    [5] Rasmussen K H, Marie R, Lange J M et al. A device for extraction, manipulation and stretching of DNA from single human chromosomes[J]. Lab on a Chip, 11, 1431-1433(2011).

    [6] Liu J Y, Duan Y X. Saliva: a potential media for disease diagnostics and monitoring[J]. Oral Oncology, 48, 569-577(2012).

    [7] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 647-649(1978).

    [8] Li X. Femtosecond laser fabrication and liquid refractive index sensing of fiber microfluidic devices[D](2013).

    [9] Sun H H. Femtosecond laser fabrication and temperature and salt sensing characteristics of Mach Zehnder interference microcavity in optical fiber[D](2015).

    [10] Su B, Cui D F, Liu C C et al. Fabrication of PDMS electrophoresis chip with fiber[J]. Measurement & Control Technology, 24, 5-8(2005).

    [11] Jiang C. Femtosecond laser pulse precision machining microfluidic fiber devices and application[J]. Laser Journal, 30, 6-8(2009).

    [12] Lou N, Jha R, Domínguez-Juárez J L et al. Embedded optical micro/nano-fibers for stable devices[J]. Optics Letters, 35, 571-573(2010).

    [13] Lorenzi R, Jung Y, Brambilla G. In-line absorption sensor based on coiled optical microfiber[J]. Applied Physics Letters, 98, 173504(2011).

    [14] Lu M D, Zhang X P, Liang Y Z et al. Liquid crystal filled surface plasmon resonance thermometer[J]. Optics Express, 24, 10904-10911(2016).

    [15] Russell P. Photonic crystal fibers[J]. Science, 299, 358-362(2003).

    [16] Qian W W, Zhao C L, Wang Y P et al. Partially liquid-filled hollow-core photonic crystal fiber polarizer[J]. Optics Letters, 36, 3296-3298(2011).

    [17] Wang Y, Wang D N, Liao C R et al. Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber[J]. Optics Letters, 38, 269-271(2013).

    [18] Yang X H, Wang L L. Fluorescence pH probe based on microstructured polymer optical fiber[J]. Optics Express, 15, 16478-16483(2007).

    [19] Yanik A A, Huang M, Artar A et al. Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes[J]. Applied Physics Letters, 96, 021101(2010).

    [20] Eftekhari F, Escobedo C, Ferreira J et al. Nanoholes as nanochannels: flow-through plasmonic sensing[J]. Analytical Chemistry, 81, 4308-4311(2009).

    [21] Pang L, Hwang G M, Slutsky B et al. Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor[J]. Applied Physics Letters, 91, 123112(2007).

    [22] Yang J C, Ji J, Hogle J M et al. Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes[J]. Nano Letters, 8, 2718-2724(2008).

    [23] Im H, Lesuffleur A, Lindquist N C et al. Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing[J]. Analytical Chemistry, 81, 2854-2859(2009).

    [24] Escobedo C, Brolo A G, Gordon R et al. Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors[J]. Analytical Chemistry, 82, 10015-10020(2010).

    [25] Huang M, Yanik A A, Chang T Y et al. Sub-wavelength nanofluidics in photonic crystal sensors[J]. Optics Express, 17, 24224-24233(2009).

    [26] Chow E, Grot A, Mirkarimi L W et al. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity[J]. Optics Letters, 29, 1093-1095(2004).

    [27] Lee M R, Fauchet P M. Nanoscale microcavity sensor for single particle detection[J]. Optics Letters, 32, 3284-3286(2007).

    [28] Lee M R, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection[J]. Optics Express, 15, 4530-4535(2007).

    [29] Nunes P S, Mortensen N A, Kutter J P et al. Photonic crystal resonator integrated in a microfluidic system[J]. Optics Letters, 33, 1623-1625(2008).

    [30] Mandal S, Goddard J M, Erickson D. A multiplexed optofluidic biomolecular sensor for low mass detection[J]. Lab on a Chip, 9, 2924-2932(2009).

    [31] Rindorf L, Jensen J B, Dufva M et al. Photonic crystal fiber long-period gratings for biochemical sensing[J]. Optics Express, 14, 8224-8231(2006).

    [32] Huy M C P, Laffont G, Dewynter V et al. Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer[J]. Optics Letters, 32, 2390-2392(2007).

    [33] Rindorf L, Bang O. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating[J]. Optics Letters, 33, 563-565(2008).

    [34] He Z H, Zhu Y N, Du H. Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution[J]. Applied Physics Letters, 92, 044105(2008).

    [35] Wu D K C, Kuhlmey B T, Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor[J]. Optics Letters, 34, 322-324(2009).

    [36] White I M, Oveys H, Fan X D. Liquid-core optical ring-resonator sensors[J]. Optics Letters, 31, 1319-1321(2006).

    [37] Barrios C A, Bañuls M J, González-Pedro V et al. Label-free optical biosensing with slot-waveguides[J]. Optics Letters, 33, 708-710(2008).

    [38] Bernardi A, Kiravittaya S, Rastelli A et al. On-chip Si/SiOx microtube refractometer[J]. Applied Physics Letters, 93, 094106(2008).

    [39] Li H, Fan X D. Characterization of sensing capability of optofluidic ring resonator biosensors[J]. Applied Physics Letters, 97, 011105(2010).

    [40] Sumetsky M, Dulashko Y, Windeler R S. Optical microbubble resonator[J]. Optics Letters, 35, 898-900(2010).

    [41] Testa G, Huang Y J, Sarro P M et al. Integrated silicon optofluidic ring resonator[J]. Applied Physics Letters, 97, 131110(2010).

    [42] Grillet C, Domachuk P, Ta’eed V et al. Compact tunable microfluidic interferometer[J]. Optics Express, 12, 5440-5447(2004).

    [43] Song W Z, Liu A Q, Swaminathan S et al. Determination of single living cell’s dry/water mass using optofluidic chip[J]. Applied Physics Letters, 91, 223902(2007).

    [44] Guo Y B, Li H, Reddy K et al. Optofluidic Fabry-Pérot cavity biosensor with integrated flow-through micro-/ nanochannels[J]. Applied Physics Letters, 98, 041104(2011).

    [45] Song W Z, Zhang X M, Liu A Q et al. Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity[J]. Applied Physics Letters, 89, 203901(2006).

    [46] Lear K L, Shao H, Wang W N et al. Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes[C], 121-122(2007).

    [47] St-Gelais R, Masson J, Peter Y A. All-silicon integrated Fabry-Pérot cavity for volume refractive index measurement in microfluidic systems[J]. Applied Physics Letters, 94, 243905(2009).

    [48] Ouyang H M, Striemer C C, Fauchet P M. Quantitative analysis of the sensitivity of porous silicon optical biosensors[J]. Applied Physics Letters, 88, 163108(2006).

    [49] Orosco M M, Pacholski C, Sailor M J. Real-time monitoring of enzyme activity in a mesoporous silicon double layer[J]. Nature Nanotechnology, 4, 255-258(2009).

    [50] Sun Y Z, Fan X D. Highly selective single-nucleotide polymorphism detection with optofluidic ring resonator lasers[C], CWL6(2011).

    [51] Zhu H Y, White I M, Suter J D et al. Integrated refractive index optical ring resonator detector for capillary electrophoresis[J]. Analytical Chemistry, 79, 930-937(2007).

    [52] Liao C R, Liu S, Xu L et al. Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement[J]. Optics Letters, 39, 2827-2830(2014).

    [53] Wang Y P. Review of long period fiber gratings written by CO2 laser[J]. Journal of Applied Physics, 108, 081101(2010).

    [54] Ma J, Jin W, Ho H L et al. High-sensitivity fiber-tip pressure sensor with graphene diaphragm[J]. Optics Letters, 37, 2493-2495(2012).

    [55] Zhong X Y, Wang Y P, Liao C R et al. Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber[J]. Optics Letters, 40, 1791-1794(2015).

    [56] Villatoro J, Kreuzer M P, Jha R et al. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity[J]. Optics Express, 17, 1447-1453(2009).

    [57] Cubillas A M, Silva-Lopez M, Lazaro J M et al. Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm[J]. Optics Express, 15, 17570-17576(2007).

    [58] Xu J C, Wang X W, Cooper K L et al. Miniature all-silica fiber optic pressure and acoustic sensors[J]. Optics Letters, 30, 3269-3271(2005).

    [59] Ma J, Ju J, Jin L et al. A compact fiber-tip micro-cavity sensor for high-pressure measurement[J]. IEEE Photonics Technology Letters, 23, 1561-1563(2011).

    [60] Yang X H, Zhao Q K, Qi X X et al. In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores[J]. Sensors and Actuators A: Physical, 272, 23-27(2018).

    [61] Datta A, Eom I Y, Dhar A et al. Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon[J]. IEEE Sensors Journal, 3, 788-795(2003).

    [62] Cho S H, Godin J, Lo Y H. Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels[J]. IEEE Photonics Technology Letters, 21, 1057-1059(2009).

    [63] Korampally V, Mukherjee S, Hossain M et al. Development of a miniaturized liquid core waveguide system with nanoporous dielectric cladding: a potential biosensing platform[J]. IEEE Sensors Journal, 9, 1711-1718(2009).

    [64] Gopalakrishnan N, Sagar K S, Christiansen M B et al. UV patterned nanoporous solid-liquid core waveguides[J]. Optics Express, 18, 12903-12908(2010).

    [65] Fink Y, Winn J N, Fan S et al. A dielectric omnidirectional reflector[J]. Science, 282, 1679-1682(1998).

    [66] Ganesh N, Zhang W, Mathias P C et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface[J]. Nature Nanotechnology, 2, 515-520(2007).

    [67] Smolka S, Barth M, Benson O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers[J]. Optics Express, 15, 12783-12791(2007).

    [68] Coscelli E, Sozzi M, Poli F et al. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 967-972(2010).

    [69] Liu Y M, Wang S, Park Y S et al. Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity[J]. Optics Express, 18, 25029-25034(2010).

    [70] Xu Q F, Almeida V R, Panepucci R R et al. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material[J]. Optics Letters, 29, 1626-1628(2004).

    [71] Yin D L, Deamer D W, Schmidt H et al. Single-molecule detection sensitivity using planar integrated optics on a chip[J]. Optics Letters, 31, 2136-2138(2006).

    [72] Rudenko M I, Kühn S, Lunt E J et al. Ultrasensitive Qβ phage analysis using fluorescence correlation spectroscopy on an optofluidic chip[J]. Biosensors and Bioelectronics, 24, 3258-3263(2009).

    [73] Chen A, Eberle M M, Lunt E J et al. Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip[J]. Lab on a Chip, 11, 1502-1506(2011).

    [74] Holmes M R, Shang T, Hawkins A R et al. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 9, 023004(2010).

    [75] Kühn S, Measor P, Lunt E J et al. Loss-based optical trap for on-chip particle analysis[J]. Lab on a Chip, 9, 2212-2216(2009).

    [76] Kühn S, Phillips B S, Lunt E J et al. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip[J]. Lab on a Chip, 10, 189-194(2010).

    [77] Sun Y Z, Shopova S I, Wu C S et al. Bioinspired optofluidic FRET lasers via DNA scaffolds[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 16039-16042(2010).

    [78] Williams G O S, Chen J S Y, Euser T G et al. Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity[J]. Lab on a Chip, 12, 3356-3361(2012).

    [79] Li Z L, Zhou W Y, Liu Y G et al. Highly efficient fluorescence detection using a simplified hollow core microstructured optical fiber[J]. Applied Physics Letters, 102, 011136(2013).

    [80] Yang X, Gong C Y, Wang Y Q et al. A sequentially bioconjugated optofluidic laser for wash-out-free and rapid biomolecular detection[J]. Lab on a Chip, 21, 1686-1693(2021).

    [81] Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84, 1-20(1977).

    [82] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 99, 5215-5217(1977).

    [83] Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J]. The Journal of Chemical Physics, 69, 4159-4161(1978).

    [84] Michaels A M, Nirmal M, Brus L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals[J]. Journal of the American Chemical Society, 121, 9932-9939(1999).

    [85] Saikin S K, Chu Y Z, Rappoport D et al. Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates[J]. The Journal of Physical Chemistry Letters, 1, 2740-2746(2010).

    [86] Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997).

    [87] Kneipp K, Wang Y, Kneipp H et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters, 78, 1667-1670(1997).

    [88] Yang X, Shi C, Wheeler D et al. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering[J]. Journal of the Optical Society of America A, 27, 977-984(2010).

    [89] Oo M K K, Han Y, Kanka J R et al. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy[J]. Optics Letters, 35, 466-468(2010).

    [90] Huh Y S, Chung A J, Cordovez B et al. Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells[J]. Lab on a Chip, 9, 433-439(2009).

    [91] Cho H, Lee B, Liu G L et al. Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration[J]. Lab on a Chip, 9, 3360-3363(2009).

    [92] White I M, Gohring J, Fan X D. SERS-based detection in an optofluidic ring resonator platform[J]. Optics Express, 15, 17433-17442(2007).

    [93] Kim S M, Zhang W, Cunningham B T. Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy[J]. Applied Physics Letters, 93, 143112(2008).

    [94] Shivananju B N, Yu W Z, Liu Y et al. The roadmap of graphene-based optical biochemical sensors[J]. Advanced Functional Materials, 27, 1603918(2017).

    [95] Xing F, Meng G X, Zhang Q et al. Ultrasensitive flow sensing of a single cell using graphene-based optical sensors[J]. Nano Letters, 14, 3563-3569(2014).

    [96] Park D W, Schendel A A, Mikael S et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications[J]. Nature Communications, 5, 5258(2014).

    [97] Cruz S M A, Girão A F, Gonçalves G et al. Graphene: the missing piece for cancer diagnosis?[J]. Sensors, 16, 137(2016).

    [98] Mao S, Lu G H, Yu K H et al. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates[J]. Advanced Materials, 22, 3521-3526(2010).

    [99] Min S K, Kim W Y, Cho Y et al. Fast DNA sequencing with a graphene-based nanochannel device[J]. Nature Nanotechnology, 6, 162-165(2011).

    [100] Kim J A, Hwang T, Dugasani S R et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications[J]. Sensors and Actuators B: Chemical, 187, 426-433(2013).

    [101] Basu S, Bhattacharyya P. Recent developments on graphene and graphene oxide based solid state gas sensors[J]. Sensors and Actuators B: Chemical, 173, 1-21(2012).

    [102] Yao B C, Wu Y, Zhang A Q et al. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing[J]. Optics Express, 22, 28154-28162(2014).

    [103] Zhao Y, Li X G, Zhou X et al. Review on the graphene based optical fiber chemical and biological sensors[J]. Sensors and Actuators B: Chemical, 231, 324-340(2016).

    [104] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 24, 156-159(1970).

    [105] Yuan L B, Liu Z H, Yang J. Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers[J]. Applied Physics Letters, 91, 054101(2007).

    [106] Zhang Y, Liu Z H, Yang J et al. Four-core optical fiber micro-hand[J]. Journal of Lightwave Technology, 30, 1487-1491(2012).

    [107] Zhong M C, Wei X B, Zhou J H et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 4, 1768(2013).

    [108] Xin H B, Xu R, Li B J. Optical formation and manipulation of particle and cell patterns using a tapered optical fiber[J]. Laser & Photonics Reviews, 7, 801-809(2013).

    [109] Li Y C, Xin H B, Liu X S et al. Non-contact intracellular binding of chloroplasts in vivo[J]. Scientific Reports, 5, 10925(2015).

    [110] Liu S J, Li Z B, Weng Z et al. Miniaturized optical fiber tweezers for cell separation by optical force[J]. Optics Letters, 44, 1868-1871(2019).

    [111] Wang Y K, Lu Y, Sun Y Q et al. Compact single fiber optical tweezer-micropipette system for completely noninvasive cell sorting[J]. Applied Physics Letters, 122, 233701(2023).

    [112] Kerbage C, Eggleton B, Westbrook P et al. Experimental and scalar beam propagation analysis of an air-silica microstructure fiber[J]. Optics Express, 7, 113-122(2000).

    [113] Wen S M[M]. Microfluidic boundary layer theory and its application(2002).

    [114] Singh M, Truong J, Reeves W B et al. Emerging cytokine biosensors with optical detection modalities and nanomaterial-enabled signal enhancement[J]. Sensors, 17, 428(2017).

    [115] Yang X H, Yuan T T, Teng P P et al. An in-fiber integrated optofluidic device based on an optical fiber with an inner core[J]. Lab on a Chip, 14, 2090-2095(2014).

    [116] Yang X H, Yuan T T, Yang J et al. In-fiber integrated chemiluminiscence online optical fiber sensor[J]. Optics Letters, 38, 3433-3436(2013).

    [117] Yuan T T, Yang X H, Liu Z H et al. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores[J]. Optics Express, 25, 18205-18215(2017).

    [118] Gao D H, Yang X H, Teng P P et al. Optofluidic in-fiber on-line ethanol sensing based on graphene oxide integrated hollow optical fiber with suspended core[J]. Optical Fiber Technology, 58, 102250(2020).

    [119] Yuan T T, Zhang X T, Xia Q et al. Design and fabrication of a functional fiber for micro flow sensing[J]. Journal of Lightwave Technology, 39, 290-294(2021).

    [120] Yuan T T, Zhang X T, Xia Q et al. A twin-core and dual-hole fiber design and fabrication[J]. Journal of Lightwave Technology, 39, 4028-4033(2021).

    [121] Yuan T T, Zhong X, Guan C Y et al. Long period fiber grating in two-core hollow eccentric fiber[J]. Optics Express, 23, 33378-33385(2015).

    [122] Ding W, Wang Y Y, Gao S F et al. Theoretical and experimental investigation of light guidance in hollow-core anti-resonant fiber[J]. Acta Physica Sinica, 67, 124201(2018).

    Tools

    Get Citation

    Copy Citation Text

    Tingting Yuan, Xiaotong Zhang, Xinghua Yang, Libo Yuan. Microfluidic Fiber Optic Sensors: from Functional Integration to Functional Design (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0106004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Oct. 9, 2023

    Accepted: Nov. 7, 2023

    Published Online: Jan. 29, 2024

    The Author Email: Yuan Libo (lbyuan@vip.sina.com)

    DOI:10.3788/LOP232253

    Topics