Electronics Optics & Control, Volume. 31, Issue 9, 92(2024)
A YOLOv7 Based Lightweight Underwater Target Detection Algorithm
[1] [1] SAHOO ADWIVEDY S KROBI P S.Advancements in the field of autonomous underwater vehicle[J].Ocean Engineering2019181:145160.
[2] [2] FORSYTH D.Object detection with discriminatively trained partbased models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence201447(2):67.
[3] [3] KRIZHEVSKY ASUTSKEVER IHINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM201760(6):8490.
[4] [4] ZHAO Z QZHENG PXU S Tet al.Object detection with deep learning[J].IEEE Transactions on Neural Networks and Learning Systems201930(11):32123232.
[5] [5] UIJLINGS J R RVAN DE SANDE K E AGEVERS Tet al.Selective search for object recognition[J].International Journal of Computer Vision2013104(2):154171.
[6] [6] GIRSHICK R.Fast RCNN[R].Los Alamos:arXiv Preprint2015:arXiv:1504.08083.
[7] [7] REN S QHE K MGIRSHICK Ret al.Faster RCNN:towards realtime object detection with region proposalnetworks[R].Los Alamos:arXiv Preprint2016:arXiv:1506.01497.
[8] [8] HE K MGKIOXARI GDOLLR Pet al.Mask RCNN[R].Los Alamos:arXiv Preprint2018:arXiv:1703.06870.
[9] [9] CAI Z WVASCONCELOS N.Cascade RCNN:delving into high quality object detection[R].Los Alamos:arXiv Preprint2018:arXiv:1712.00726.
[10] [10] LIU WANGUELOV DERHAN Det al.SSD:single shot multibox detector[R].Los Alamos:arXiv Preprint2016:arXiv:1512.02325.
[11] [11] REDMON JDIVVALA SGIRSHICK Ret al.You only look once:unifiedrealtime object detection[R].Los Alamos:arXiv Preprint2016:arXiv:1506.02640.
[12] [12] REDMON JFARHADI A.YOLO9000:betterfasterstronger[R].Los Alamos:arXiv Preprint2016:arXiv:1612.08242.
[13] [13] REDMON JFARHADI A.YOLOv3:an incremental improvement[R].Los Alamos:arXiv Preprint2018:arXiv:1804.02767.
[14] [14] BOCHKOVSKIY AWANG C YLIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[R].Los Alamos:arXiv Preprint2020:arXiv:2004.10934.
[15] [15] LI C YLI L LJIANG H Let al.YOLOv6:a singlestage object detection framework for industrial applications[R].Los Alamos:arXiv Preprint2022:arXiv:2209.02976.
[16] [16] WANG C YBOCHKOVSKIY ALIAO H Y M.YOLOv7:trainable bagoffreebies sets new stateoftheart for realtime object detectors[R].Los Alamos:arXiv Preprint 2022:arXiv:2207.02696.
[18] [18] CHEN XYUAN M J HYANG Qet al.UnderwaterYCC:underwater target detection optimization algorithm based on YOLOv7[J].Journal of Marine Science and Engineering202311(5):995.
[19] [19] WOO SPARK JLEE JYet al.CBAM:convolutional block attention module[R].Los Alamos:arXiv Preprint 2018:arXiv:1807.06521.
[20] [20] LIN TYDOLLR PGIRSHICK Ret al.Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE2017.doi:10.1109/CVPR.2017.106.
[21] [21] LIU SQI LQIN H Fet al.Path aggregation network for instance segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City:IEEE2018.doi:10.1109/CVPR.2018.00913.
[22] [22] MA N NZHANG X YZHENG H Tet al.ShuffleNet v2:practical guidelines for efficient CNN architecture design[R].Los Alamos:arXiv Preprint2018:arXiv:1807.11164.
[23] [23] CHEN J RKAO SHHE Het al.Rundon’t walk:chasing higher FLOPS for faster neural networks[R].Los Alamos:arXiv Preprint2023:arXiv:2303.03667.
[24] [24] HU JSHEN LALBANIE Set al.Squeezeandexcitation networks[R].Los Alamos:arXiv Preprint2019:arXiv:1709.01507.
[25] [25] ZHENG Z HWANG PLIU Wet al.DistanceIoU loss:faster and better learning for bounding box regression[R].Los Alamos:arXiv Preprint2019:arXiv:1911.08287.
[26] [26] GEVORGYAN Z.SIoU loss:more powerful learning for bounding box regression[R].Los Alamos:arXiv Preprint2022:arXiv:2205.12740.
Get Citation
Copy Citation Text
TANG Luting, HUANG Hongqiong. A YOLOv7 Based Lightweight Underwater Target Detection Algorithm[J]. Electronics Optics & Control, 2024, 31(9): 92
Received: Sep. 25, 2023
Accepted: --
Published Online: Oct. 22, 2024
The Author Email: