Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1942(2024)

Effect of Zr on Microstructure and Electromagnetic Wave Absorption Properties of Polymer-Derived SiBCN Ceramics

HU Shuhao... CHEN Pingan*, LI Xiangcheng, ZHU Yingli and ZHU Boquan |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(40)

    [1] [1] HAO B Y, TAO Z C, YAN X, et al. Synthesis and wave absorption characterization of SiC nanowires/expanded graphite composites[J]. Carbon, 2022, 196: 540-551.

    [2] [2] CHEN Zhenwei, FAN Xiaomeng, HUANG Xiaoxiao, et al. Adv Ceram, 2020, 41(S1): 1-98.

    [3] [3] ZHU S Q, LEI Z K, LIU Z H, et al. Synthesis and microwave absorption properties of sandwich microstructure Ce2Fe17N3-δ/ expanded graphite composites[J]. J Alloys Compd, 2022, 907: 164445.

    [4] [4] LEI Y M, YAO Z J, LI S Z, et al. Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes[J]. Ceram Int, 2020, 46(8): 10006-10015.

    [5] [5] FARSHIDFAR F, FATTAHI A, BRüNING R, et al. A creative method to tune Fe-O interaction in ferrites[J]. J Adv Ceram, 2023, 12(8): 1612-1624.

    [6] [6] MENG Fanxing, TANG Ning, SU Dong, et al. J Chin Ceram Soc, 2010, 38(8): 1533-1537.

    [7] [7] WANG Sihui. Mater China, 2019, 38(10): 1037-1040.

    [8] [8] LUO Chunjia, KONG Jie. Acta Polym Sin, 2021, 52(11): 1427-1440.

    [9] [9] YE F, ZHANG L T, YIN X W, et al. Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics[J]. J Eur Ceram Soc, 2014, 34(2): 205-215.

    [10] [10] LI W, LI X C, GONG W, et al. Construction of multiple heterogeneous interface and its effect on microwave absorption of SiBCN ceramics[J]. Ceram Int, 2020, 46(6): 7823-7832.

    [11] [11] LIU H Q, ZHANG Y B, LIU X M, et al. Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption[J]. Chem Eng J, 2022, 433: 133743.

    [12] [12] SONG Y, LIU Z Y, ZHANG X C, et al. Single source precursor derived SiBCNHf ceramic with enhanced high-temperature microwave absorption and antioxidation[J]. J Mater Sci Technol, 2022, 126: 215-227.

    [13] [13] SONG Y, ZHU R Q, LIU Z Y, et al. Phase-transformation nanoparticles synchronously boosting mechanical and electromagnetic performance of SiBCN ceramics[J]. ACS Appl Mater Interfaces, 2023, 15(3): 4234-4245.

    [14] [14] LONG X, SHAO C W, WANG H, et al. Synthesis and characterization of a polyborosilazane/Cp2ZrCl2 hybrid precursor for the Si—B—C—N—Zr multinary ceramic[J]. Dalton Trans, 2015, 44(35): 15463-15469.

    [15] [15] WANG C G, CHEN P G, LI X C, et al. Enhanced electromagnetic wave absorption for Y2O3-doped SiBCN ceramics[J]. ACS Appl Mater Interfaces, 2021, 13(46): 55440-55453.

    [16] [16] QIN H L, LIU Y S, YE F, et al. Dielectric and microwave absorption properties of SiCnw-SiBCN composite ceramics deposited via chemical vapor infiltration[J]. J Alloys Compd, 2019, 771: 747-754.

    [17] [17] LI J P, ZHAO M X, LIU Y S, et al. Microstructure and dielectric properties of LPCVD/CVI-SiBCN ceramics annealed at different temperatures[J]. Materials, 2017, 10(6): 655.

    [18] [18] HANNIET Q, BOUSSMEN M, BARéS J, et al. Investigation of polymer-derived Si—(B) —C—N ceramic/reduced graphene oxide composite systems as active catalysts towards the hydrogen evolution reaction[J]. Sci Rep, 2020, 10(1): 22003.

    [19] [19] SONG C K, CHENG L F, LIU Y S, et al. Microstructure and electromagnetic wave absorption properties of RGO-SiBCN composites via PDC technology[J]. Ceram Int, 2018, 44(15): 18759-18769.

    [20] [20] CHEN F, ZHANG S S, MA B B, et al. Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption[J]. Chem Eng J, 2022, 431: 134007.

    [21] [21] GUO X E, FENG Y R, LIN X A, et al. The dielectric and microwave absorption properties of polymer-derived SiCN ceramics[J]. J Eur Ceram Soc, 2018, 38(4): 1327-1333.

    [22] [22] JIN L, WANG J Q, WU F, et al. MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: Optimum composition and performance evaluation[J]. Carbon, 2021, 182: 770-780.

    [23] [23] GAO Z G, LAN D, ZHANG L M, et al. Simultaneous manipulation of interfacial and defects polarization toward Zn/co phase and ion hybrids for electromagnetic wave absorption[J]. Adv Funct Materials, 2021, 31(50): 2106677.

    [24] [24] CHEN X T, WU Y, GU W H, et al. Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption[J]. Carbon, 2022, 189: 617-633.

    [25] [25] ZHANG M, FAN X M, YE F, et al. Synthesis, microstructure and electromagnetic properties of Hf-based SiBCN ceramics[J]. Ceram Int, 2023, 49(12): 19664-19672.

    [26] [26] WU Z C, CHENG H W, JIN C, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption[J]. Adv Mater, 2022, 34(11): e2107538.

    [27] [27] GUO R D, SU D, CHEN F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption[J]. ACS Appl Mater Interfaces, 2022, 14(2): 3084-3094.

    [28] [28] WANG H, WU L N, JIAO J F, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. J Mater Chem A, 2015, 3(12): 6517-6525.

    [29] [29] Guo K Y, Chen L, Yang G J. Boosting electromagnetic wave absorption of Ti3AlC2 by improving effective electrical conductivity. Journal of Advanced Ceramics, 2023, 12(8): 1533-1546.

    [30] [30] XIA L, FENG Y M, ZHAO B. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough[J]. J Mater Sci Technol, 2022, 130: 136-156.

    [31] [31] YUE L Q, ZHONG B, XIA L, et al. Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption[J]. J Colloid Interface Sci, 2021, 582(Pt A): 177-186.

    [32] [32] DONG S, ZHANG W Z, ZHANG X H, et al. Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band[J]. Chem Eng J, 2018, 354: 767-776.

    [33] [33] DAKIN T W. Conduction and polarization mechanisms and trends in dielectric[J]. IEEE Electr Insul Mag, 2006, 22(5): 11-28.

    [34] [34] QUAN B, LIANG X H, JI G B, et al. Dielectric polarization in electromagnetic wave absorption: Review and perspective[J]. J Alloys Compd, 2017, 728: 1065-1075.

    [35] [35] ZHOU X F, JIA Z R, ZHANG X X, et al. Electromagnetic wave absorption performance of NiCo2X4 (X=O, S, Se, Te) spinel structures[J]. Chem Eng J, 2021, 420: 129907.

    [36] [36] ZHANG X, LIU Z C, DENG B W, et al. Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions[J]. Chem Eng J, 2021, 419: 129547.

    [37] [37] ZHANG H X, JIA Z R, WANG B B, et al. Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres[J]. Chem Eng J, 2021, 421: 129960.

    [38] [38] ZHOU J, ZHANG G P, LUO J L, et al. A MOFs-derived 3D superstructure nanocomposite as excellent microwave absorber[J]. Chem Eng J, 2021, 426: 130725.

    [39] [39] CHEN Q Q, LI D X, YANG Z H, et al. SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance[J]. Carbon, 2021, 179: 180-189.

    [40] [40] CAO M S, WANG X X, CAO W Q, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion[J]. Small, 2018: e1800987.

    Tools

    Get Citation

    Copy Citation Text

    HU Shuhao, CHEN Pingan, LI Xiangcheng, ZHU Yingli, ZHU Boquan. Effect of Zr on Microstructure and Electromagnetic Wave Absorption Properties of Polymer-Derived SiBCN Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1942

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 14, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Pingan CHEN (pinganchen@wust.edu.cn;)

    DOI:10.14062/j.issn.0454-5648.20230715

    Topics