Journal of Synthetic Crystals, Volume. 49, Issue 4, 651(2020)

Hydrothermal Synthesis and Zinc Storage Performance of Al-doped MnO2

TIAN Zhu1... LI Xueyuan1, XIAO Yan1, WANG Bian1, SUN Xueqin2, YOU Dongjiang2, LIU Ying2, ZHU Jianhui2, GAO Feng1 and KANG Litao2,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(54)

    [1] [1] Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy & Environmental Science,2013,6(8):2338-2360.

    [2] [2] Tang Y, Zheng S, Xu Y, et al. Advanced batteries based on manganese dioxide and its composites[J].Energy Storage Materials,2018,12:284-309.

    [3] [3] Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J].Nature Communications,2017,8(1):405.

    [4] [4] Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J].Nature Communications,2018,9(1):2906.

    [5] [5] Wang J, Wang J G, Liu H, et al. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries[J].Journal of Materials Chemistry A,2019,7(22):13727-13735.

    [6] [6] Xu C, Li B, Du H, et al. Energetic zinc ion chemistry:the rechargeable zinc ion battery[J].Angewandte Chemie International Edition,2012,51(4):933-935.

    [7] [7] Higashi S, Lee S W, Lee J S, et al. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration[J].Nature Communications,2016,7(1):11801.

    [8] [8] Sun K E, Hoang T K, Doan T N, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J].ACS Applied Materials & Interfaces,2017,9(11):9681-9687.

    [9] [9] Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries[J].Nature Materials,2018,17(6):543-549.

    [10] [10] Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J].Advanced Energy Materials,2018,8(25):1801090.

    [11] [11] Parker J F, Chervin C N, Nelson E S, et al. Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling[J].Energy & Environmental Science,2014,7(3):1117-1124.

    [12] [12] Cui M, Xiao Y, Kang L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries[J].ACS Applied Energy Materials,2019,2(9):6490-6496.

    [13] [13] Winsberg J, Janoschka T, Morgenstern S, et al. Poly(TEMPO)/Zinc hybrid-flow battery:a novel, “green”, high voltage, and safe energy storage system[J].Advanced Materials,2016,28(11):2238-2243.

    [14] [14] Song M, Tan H, Chao D, et al. Recent advances in Zn-Ion batteries[J].Advanced Functional Materials,2018,28(41):1802564.

    [15] [15] Lee B, Yoon C S, Lee H R, et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide[J].Scientific Reports,2014,4:6066.

    [16] [16] Sun W, Wang F, Hou S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J].Journal of the American Chemical Society,2017,139(29):9775-9778.

    [17] [17] Zhang X, Wu S, Deng S, et al. 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries[J].Small Methods,2019,3(12):1900525.

    [18] [18] Poyraz A S, Laughlin J, Zec Z. Improving the cycle life of cryptomelane type manganese dioxides in aqueous rechargeable zinc ion batteries:The effect of electrolyte concentration[J].Electrochimica Acta,2019,305:423-432.

    [19] [19] Konarov A, Voronina N, Jo J H, et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries[J].ACS Energy Letters,2018,3(10):2620-2640.

    [20] [20] Wu B, Zhang G, Yan M, et al. Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous zn-ion battery[J].Small,2018,14(13):1703850.

    [21] [21] Deng Z, Huang J, Liu J, et al. β-MnO2 nanolayer coated on carbon cloth as a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life[J].Materials Letters,2019,248:207-210.

    [22] [22] Xu D, Li B, Wei C, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions[J].Electrochimica Acta,2014,133:254-261.

    [23] [23] Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J].Nature Energy,2016,1(5):16039.

    [24] [24] Li T, Wu J, Xiao X, et al. Band gap engineering of MnO2 through in situ Al-doping for applicable pseudocapacitors[J].RSC Advances,2016,6(17):13914-13919.

    [25] [25] Hu Z, Xiao X, Chen C, et al. Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability[J].Nano Energy,2015,11:226-234.

    [26] [26] Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J].Nature Energy, 2016,1(10):16119.

    [27] [27] Xia C, Guo J, Li P, et al. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode[J].Angewandte Chemie International Edition, 2018,57(15):3943-3948.

    [28] [28] Alfaruqi M H, Mathew V, Song J, et al. Electrochemical zinc intercalation in lithium vanadium oxide:a high-capacity zinc-ion battery cathode[J].Chemistry of Materials, 2017,29(4):1684-1694.

    [29] [29] Pang Q, Sun C, Yu Y, et al. H2V3O8 Nanowire/Graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity[J].Advanced Energy Materials, 2018,8(19):1800144.

    [30] [30] Huang Y, He W, Zhang P, et al. Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries[J].Functional Materials Letters, 2018,11(6):1840006.

    [31] [31] Xiao L, Zhao Y, Yang Y, et al. Enhanced electrochemical stability of Al-doped LiMn2O4synthesized by a polymer-pyrolysis method[J].Electrochimica Acta, 2008,54(2):545-550.

    [32] [32] Ding Y L, Xie J, Cao G S, et al. Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries[J].The Journal of Physical Chemistry C, 2011,115(19):9821-9825.

    [33] [33] Bahloul A, Nessark B, Chelali N E, et al. New composite cathode material for Zn/MnO2 cells obtained by electro-deposition of polybithiophene on manganese dioxide particles[J].Solid State Ionics, 2011,204-205:53-60.

    [34] [34] Lee J, Ju J B, Cho W I, et al. Todorokite-type MnO2 as a zinc-ion intercalating material[J].Electrochimica Acta, 2013,112:138-143.

    [35] [35] Nam K W, Kim H, Choi J H, et al. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries[J].Energy & Environmental Science, 2013,12(6):1999-2009.

    [36] [36] Wang D, Wang L, Liang G, et al. A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery[J].ACS Nano, 2019,13(9):10643-10652.

    [37] [37] Yan M, He P, Chen Y, et al. Water-Lubricated Intercalation in V2O5?nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries[J].Advanced Materials, 2018,30(1):1703725.

    [38] [38] Pottrr R M, Rossman G R. The tetravalent manganese oxides:identification, hydration, and structural relationships by infrared spectroscopy[J].American Mineralogist, 1979,64(11-12):1199-1218.

    [39] [39] Liang S, Teng F, Bulgan G, et al. Effect of phase structure of mno2 nanorod catalyst on the activity for CO oxidation[J].The Journal of Physical Chemistry C, 2008,112(14):5307-5315.

    [40] [40] Jana S, Basu S, Pande S, et al. Shape-selective synthesis, magnetic properties, and catalytic activity of single crystalline β-MnO2 nanoparticles[J].The Journal of Physical Chemistry C, 2007,111(44):16272-16277.

    [41] [41] Julien C M, Massot M, Poinsignon C. Lattice vibrations of manganese oxides[J].Spectrochimica Acta Part A, 2004,60(3):689-700.

    [42] [42] Chodankar N R, Dubal D P, Gund G S, et al. Flexible all-solid-state MnO2 thin films based symmetric supercapacitors[J].Electrochimica Acta, 2015,165:338-347.

    [43] [43] Wang J G, Yang Y, Huang Z H, et al. Shape-controlled synthesis of hierarchical hollow urchin-shape α-MnO2 nanostructures and their electrochemical properties[J].Materials Chemistry and Physics, 2013,140(2-3):643-650.

    [44] [44] Wang G, Shao G, Wang L, et al. Enhanced electrochemical properties of Al-doped bulk manganese oxides synthesized by a facile liquid-phase method[J].Ionics, 2014,20(10):1367-1375.

    [45] [45] Stranick M A. MnO2 by XPS[J].Surface Science Spectra, 1999,6(1):31-38.

    [46] [46] Wang H, Xu C, Chen Y, et al. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density[J].Energy Storage Materials,2017,8:127-133.

    [47] [47] Zhang Y, Wang B, Liu F, et al. Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors[J].Nano Energy, 2016,27:627-637.

    [48] [48] Lee W G, Jang H S, Justin Raj C, et al. Effect of proton irradiation on the structural and electrochemical properties of MnO2 nanosheets[J].Journal of Electroanalytical Chemistry, 2018,811:16-25.

    [49] [49] Zeng J, Wang S, Yu J, et al. Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li-MnO2 batteries[J].Journal of Solid State Chemistry, 2014,18(6):1585-1591.

    [50] [50] Peng C, Lang J, Xu S, et al. Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors[J].RSC Advances, 2014,4(97):54662-54667.

    [51] [51] Islam S, Alfaruqi M H, Mathew V, et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries[J].Journal of Materials Chemistry A, 2017,5(44):23299-23309.

    [52] [52] Palaniyandy N, Kebede M A, Raju K, et al. α-MnO2 nanorod/onion-like carbon composite cathode material for aqueous zinc-ion battery[J].Materials Chemistry and Physics, 2019,230:258-266.

    [53] [53] Alfaruqi M H, Islam S, Mathew V, et al. Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties[J].Applied Surface Science, 2017,404:435-442.

    [54] [54] Zhang H, Liu Q, Wang J, et al. Boosting Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ Intercalation[J].Journal of Materials Chemistry A, 2019,7(38):22079-22083.

    Tools

    Get Citation

    Copy Citation Text

    TIAN Zhu, LI Xueyuan, XIAO Yan, WANG Bian, SUN Xueqin, YOU Dongjiang, LIU Ying, ZHU Jianhui, GAO Feng, KANG Litao. Hydrothermal Synthesis and Zinc Storage Performance of Al-doped MnO2[J]. Journal of Synthetic Crystals, 2020, 49(4): 651

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jun. 15, 2020

    The Author Email: Litao KANG (kangltxy@163.com)

    DOI:

    CSTR:32186.14.

    Topics