Journal of Inorganic Materials, Volume. 35, Issue 11, 1290(2020)

First-principles Study on Mg Doping in Cu2ZnSnS4

Ding SUN1...2, Yanyan DING1, Lingwei KONG3, Yuhong ZHANG2, Xiujuan GUO2, Liming WEI2, Li ZHANG4,* and Lixin ZHANG1,* |Show fewer author(s)
Author Affiliations
  • 1School of Physics, Nankai University, Tianjin 300071, China
  • 2School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
  • 3School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
  • 4Institute of Photo Electronics thin Film Devices and Technology, Nankai University, Tianjin 300071, China
  • show less
    References(30)

    [1] B MITZI D, O GUNAWAN, K TODOROV T et al. The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells, 95, 1421-1436(2011).

    [2] W WANG, T WINKLER M, O GUNAWAN et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater., 4, 1301465(2013).

    [3] W SHOCKLEY, H QUEISSER. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 32, 510-519(1961).

    [4] T GOKMEN, O GUNAWAN, K TODOROV T et al. Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett., 103, 103506(2013).

    [5] L MENG, F LI Y, B YAO et al. Mechanism of effect of intrinsic defects on electrical and optical properties of Cu2CdSnS4: an experimental and first-principles study. J. Phys. D Appl. Phys., 48, 445105(2015).

    [6] F OZEL, M KUS, A YAR et al. Fabrication of quaternary Cu2FeSnS4(CFTS) nanocrystalline fibers through electrospinning technique. J. Mater. Sci., 50, 777-783(2015).

    [7] J YU J, M DENG H, Q ZHANG et al. The role of sulfurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics. Mater. Lett., 233, 111-114(2018).

    [8] I SAPELI M M, T FERDAOUS M, A SHAHAHMADI S et al. Effects of Cr doping in the structural and optoelectronic properties of Cu2ZnSnS4(CZTS) thin film by magnetron co-sputtering. Mater. Lett., 221, 22-25(2018).

    [9] K MATSUBARA, A YAMADA, S ISHIZUKA et al. Wide-gap CIGS solar cells with Zn1-yMgyO transparent conducting film. MRS Proceed. Wide-gap CIGS solar cells with Zn1-yMgyO transparent conducting film. MRS Proceed, 865, 6(2005).

    [13] T MAEDA, S NAKAMURA, T WADA. First-principles study on Cd doping in Cu2ZnSnS4 and Cu2ZnSnSe4. Jpn. J. Appl. Phys, 51(2012).

    [14] D SUN, Y DING Y, W KONG L et al. First principles calculation of the electronic-optical properties of Cu2MgSn(SxSe1-x)4. Optoelectronics Letters, 16, 29-33(2020).

    [15] Y XIAO Z, Y LI, B YAO et al. Bandgap engineering of Cu2CdxZn1-xSnS4 alloy for photovoltaic applications: a complementary experimental and first-principles study. J. Appl. Phys., 114, 183506(2013).

    [16] G KRESSE, J FURTHMUELLER. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci, 6, 15-50(1996).

    [17] G KRESSE, D JOUBERT. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).

    [18] J HEYD, E SCUSERIA G, M ERNZERHOF. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 118, 8207-8215(2003).

    [20] W XIAO, N WANG J, S ZHAO X et al. Intrinsic defects and Na doping in Cu2ZnSnS4: a density-functional theory study. Sol. Energy, 116, 125-132(2015).

    [22] S LANY, A ZUNGER. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B, 78, 1879-1882(2008).

    [23] U DASGUPTA, K SAHA S, J PAL A. Fully-depleted pn-junction solar cells based on layers of Cu2ZnSnS4 (CZTS) and copper-diffused AgInS2 ternary nanocrystals. Sol. Energy Mater. Sol. Cells, 124, 79-85(2014).

    [24] P KOMSA H, T RANTALA T, A PASQUARELLO. Finite-size supercell correction schemes for charged defect calculations. Phys. Rev. B., 86, 045112(2012).

    [25] J PAIER, R ASAHI, A NAGOYA et al. Cu2ZnSnS4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study. Phys. Rev. B, 79, 115126.

    [26] L ZHANG X, M HAN M, H ZHENG X et al. The suppression of Cu-related charge localized defects in Cu2ZnSnS4 thin film solar cells. Sol. Energy Mater. Sol. Cells, 180, 118-122(2018).

    [27] L ZHANG X, M HAN M, Z ZHENG et al. The instability of S vacancies in Cu2ZnSnS4. RSC Adv, 6, 15424-15429(2016).

    [28] L ZHANG X, M HAN M, Z ZHENG et al. The role of Sb in solar cell material Cu2ZnSnS4. J. Mater. Chem. A, 5, 6606-6612(2017).

    [29] N NAGHAVI, D ABOU-RAS, N ALLSOP et al. Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovoltaics, 18, 411-433(2010).

    Tools

    Get Citation

    Copy Citation Text

    Ding SUN, Yanyan DING, Lingwei KONG, Yuhong ZHANG, Xiujuan GUO, Liming WEI, Li ZHANG, Lixin ZHANG. First-principles Study on Mg Doping in Cu2ZnSnS4[J]. Journal of Inorganic Materials, 2020, 35(11): 1290

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH LETTERS

    Received: Jan. 12, 2020

    Accepted: --

    Published Online: Mar. 10, 2021

    The Author Email: ZHANG Li (lxzhang@nankai.edu.cn), ZHANG Lixin (lxzhang@nankai.edu.cn)

    DOI:10.15541/jim200019

    Topics