Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1100(2024)
Research Progress on Preparation of Transparent Ceramics Based on Layered Rare-Earth Hydroxides
[1] [1] GONELLA F, MAZZOLDI P. Handbook of Nanostructured Materials and Nanotechnology[M]. Ceram Eng Sci Proceed, 1999.
[2] [2] BISSESSUR R, HAINES R I, GALLANT D, et al. Inclusion of a cobalt tetraazamacrocycle into layered molybdenum disulfide[J]. Mater Chem Phys, 2010, 122(2/3): 563-566.
[3] [3] QUAN L, ZHANG H Y, WEI H J, et al. The electromagnetic absorption of a Na-ethylenediamine graphite intercalation compound[J]. ACS Appl Mater Interfaces, 2020, 12(14): 16841-16848.
[4] [4] AUERBACH S M, CARRADO K A, DUTTA P K. Handbook of layered materials[M]. Cachan: CRC Press, 2004: 86.
[5] [5] HU L F, MA R Z, OZAWA T C, et al. Exfoliation of layered europium hydroxide into unilamellar nanosheets[J]. Chem Asian J, 2010, 5(2): 248-251.
[6] [6] ZIELKE R C, PINNAVAIA T J. Modified clays for the adsorption of environmental toxicants: Binding of chlorophenols to pillared, delaminated, and hydroxy-interlayered smectites[J]. Clays Clay Miner, 1988, 36(5): 403-408.
[7] [7] GAWA M, KURODA K. Photofunctions of intercalation compounds[J]. Chem Rev, 1995, 95(2): 399-438.
[8] [8] NOLAN T, SRINIVASAN K R, FOGLER H S. Dioxon sorption by hydroxy-aluminum-treated clays[J]. Clays Clay Miner, 1989, 37(5): 487-492.
[9] [9] SHENG G Y, XU S H, BOYD S A. Mechanism(s) controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter[J]. Environ Sci Technol, 1996, 30(5): 1553-1557.
[10] [10] OGAWA M. Preparation of a cationic azobenzene derivative- montmorillonite intercalation compound and the photochemical behavior[J]. Chem Mater, 1996, 8(7): 1347-1349.
[11] [11] HASCHKE J M. Preparation, phase equilibriums, crystal chemistry, and some properties of lanthanide hydroxide nitrates[J]. Inorg Chem, 1974, 13(8): 1812-1818.
[12] [12] GáNDARA F, PERLES J, SNEJKO N, et al. Layered rare-earth hydroxides: A class of pillared crystalline compounds for intercalation chemistry[J]. Angew Chem Int Ed, 2006, 45(47): 7998-8001.
[13] [13] MCINTYRE L J, JACKSON L, FOGG A. Ln2(OH)5NO3·xH2O (Ln=Y, Gd?Lu): A novel family of anion exchange intercalation hosts[J]. Chem Mater, 2008, 20: 335-340.
[14] [14] POUDRET L, PRIOR T J, MCINTYRE L J, et al. Synthesis and crystal structures of new lanthanide hydroxyhalide anion exchange materials, Ln2(OH)5X·1.5H2O (X=Cl, Br; Ln=Y, Dy, Er, Yb)[J]. Chem Mater, 2008, 20(24): 7447-7453.
[15] [15] LEE K, BYEON S. Synthesis and aqueous colloidal solutions of RE2(OH)5NO3·nH2O (RE=Nd and La)[J]. Ber Der Dtschen Chem Gesell, 2009(31): 4727-4732.
[16] [16] LEE K H, BYEON S H. Extended members of the layered rare-earth hydroxide family, RE2(OH)5NO3·H2O (RE=Sm, Eu, and Gd): Synthesis and anion-exchange behavior[J]. Eur J Inorg Chem, 2009(7): 929-936.
[17] [17] GENG F X, MATSUSHITA Y, MA R Z, et al. General synthesis and structural evolution of a layered family of Ln8(OH)20Cl4·nH2O (Ln= Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y)[J]. J Am Chem Soc, 2008, 130(48): 16344-16350.
[18] [18] GENG F X, MATSUSHITA Y, MA R Z, et al. Synthesis and properties of well-crystallized layered rare-earth hydroxide nitrates from homogeneous precipitation[J]. Inorg Chem, 2009, 48(14): 6724-6730.
[19] [19] ZHU Q, LI J G, MA R Z, et al. Well-defined crystallites autoclaved from the nitrate/NH4OH reaction system as the precursor for (Y, Eu)2O3 red phosphor: Crystallization mechanism, phase and morphology control, and luminescent property[J]. J Solid State Chem, 2012, 192: 229-237.
[20] [20] ZHU Q, LI J G, ZHI C Y, et al. Layered rare-earth hydroxides (LRHs) of (Y1?xEux)2(OH)5NO3·nH2O (x=0?1): Structural variations by Eu3+ doping, phase conversion to oxides, and the correlation of photoluminescence behaviors[J]. Chem Mater, 2010, 22(14): 4204-4213.
[21] [21] ZHU Q G, LI J, ZHI C, et al. Nanometer-thin layered hydroxideplatelets of (Y0.95Eu0.05)2(OH)5NO3·xH2O: Exfoliation-free synthesis, self-assembly, and the derivation of dense oriented oxide films of high transparency and greatly enhanced luminescence[J]. J Mater Chem, 2011, 21(19): 6903-6908.
[22] [22] WU X L, LI J G, ZHU Q, et al. One-step freezing temperature crystallization of layered rare-earth hydroxide (Ln2(OH)5NO3·nH2O) nanosheets for a wide spectrum of Ln (Ln=Pr-Er, and Y), anion exchange with fluorine and sulfate, and microscopic coordination probed via photoluminescence[J]. J Mater Chem C, 2015, 3(14): 3428-3437.
[23] [23] FAN G L, LI F, EVANS D G, et al. Catalytic applications of layered double hydroxides: Recent advances and perspectives[J]. Chem Soc Rev, 2014, 43(20): 7040-7066.
[24] [24] PAVLOVIC M, ROUSTER P, ONCSIK T, et al. Tuning colloidal stability of layered double hydroxides: From monovalent ions to polyelectrolytes[J]. ChemPlusChem, 2017, 82(1): 121-131.
[25] [25] LIU Z P, MA R Z, OSADA M, et al. Synthesis, anion exchange, and delamination of co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies[J]. J Am Chem Soc, 2006, 128(14): 4872-4880.
[26] [26] LEE K, LEE B I, BYEON S H. The selective antenna effect of tungstate anions for Tb-doped layered yttrium hydroxynitrate[J]. Chem Commun, 2013, 49(64): 7165-7167.
[27] [27] SASAKI T, WATANABE M. Osmotic swelling to exfoliation. exceptionally high degrees of hydration of a layered titanate[J]. J Am Chem Soc, 1998, 120(19): 4682-4689.
[28] [28] GENG F X, MA R Z, MATSUSHITA Y, et al. Structural study of a series of layered rare-earth hydroxide sulfates[J]. Inorg Chem, 2011, 50(14): 6667-6672.
[29] [29] LIANG J B, MA R Z, GENG F X, et al. ChemInform abstract: Ln2(OH)4SO4·nH2O (Ln: Pr to Tb; n≈2): A new family of layered rare-earth hydroxides rigidly pillared by sulfate ions[J]. ChemInform, 2011, 42(2): 6001-6007.
[30] [30] LIANG J B, MA R Z, EBINA Y, et al. New family of lanthanide-based inorganic-organic hybrid frameworks: Ln2(OH)4[O3S(CH2)nSO3]·2H2O (Ln=La, Ce, Pr, Nd, Sm; n=3, 4) and their derivatives[J]. Inorg Chem, 2013, 52(4): 1755-1761.
[31] [31] WANG X J, LI J G, ZHU Q, et al. Synthesis, characterization, and photoluminescent properties of (La0.95Eu0.05)2O2SO4 red phosphors with layered hydroxyl sulfate as precursor[J]. J Alloys Compd, 2014, 603: 28-34.
[32] [32] ZHU Q, LI J G, LI X D, et al. Morphology-dependent crystallization and luminescence behavior of (Y, Eu)2O3 red phosphors[J]. Acta Mater, 2009, 57(20): 5975-5985.
[33] [33] FERRU G, REINHART B, BERA M K, et al. The lanthanide contraction beyond coordination chemistry[J]. Chemistry, 2016, 22(20): 6899-6904.
[34] [34] ZHU Q, LI J G, LI X D, et al. Tens of micron-sized unilamellar nanosheets of Y/Eu layered rare-earth hydroxide: Efficient exfoliation via fast anion exchange and their self-assembly into oriented oxide film with enhanced photoluminescence[J]. Sci Technol Adv Mater, 2013, 15(1): 014203.
[35] [35] ALBERTI G, DIONIGI C, GIONTELLA E, et al. Formation of colloidal dispersions of layered γ-zirconium phosphate in water/acetone mixtures[J]. J Colloid Interface Sci, 1997, 188(1): 27-31.
[36] [36] DOMEN K, EBINA Y, IKEDA S, et al. Layered niobium oxides pillaring and exfoliation[J]. Catal Today, 1996, 28(1-2): 167-174.
[37] [37] IKESUE A. Polycrystalline Nd: YAG ceramics lasers[J]. Opt Mater, 2002, 19(1): 183-187.
[38] [38] IKESUE A, FURUSATO I, KAMATA K. Fabrication of polycrystal line, transparent YAG ceramics by a solid-state reaction method[J]. J Am Ceram Soc, 1995, 78(1): 225-228.
[39] [39] LI J G, IKEGAMI T, LEE J H, et al. Low-temperature fabrication of transparent yttrium aluminum garnet (YAG) ceramics without additives[J]. J Am Ceram Soc, 2004, 83(4): 961-963.
[40] [40] TACHIWAKI T, YOSHINAKA M, HIROTA K, et al. Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics[J]. Solid State Commun, 2001, 119(10/11): 603-606.
[41] [41] MAZDIYASNI K S, LYNCH C T, SMITH J S. Cubic phase stabilization of translucent yttria-zirconia at very low temperatures[J]. J Am Ceram Soc, 1967, 50(10): 532-537.
[42] [42] ZHU L L, PARK Y J, GAN L, et al. Enhancement of the thermal shock resistance of transparent Y2O3 ceramics by reducing the content of sintering additive[J]. Ceram Int, 2018, 44(14): 17522-17525.
[43] [43] GE L, LI J, ZHOU Z W, et al. Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering[J]. Opt Mater, 2015, 50: 25-31.
[44] [44] CHENG J P, AGRAWAL D, ZHANG Y J, et al. Microwave reactive sintering to fully transparent aluminum oxynitride (ALON) ceramics[J]. J Mater Sci Lett, 2001, 20(1): 77-79.
[45] [45] WU Y J, KIMURA R, UEKAWA N, et al. Spark plasma sintering of transparent PbZrO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 ceramics[J]. Jpn J Appl Phys, 2002, 41(Part 2, No. 2B): L219-L221.
[46] [46] KAMIMURA T, KAWAGUCHI Y, ARII T, et al. Investigation of bulk laser damage in transparent YAG ceramics controlled with microstructural refinement[C]//Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers. Proc SPIE 7132, Laser-Induced Damage in Optical Materials: 2008, Boulder, Colorado, USA. 2008, 7132: 362-366.
[47] [47] HATCH S E, PARSONS W F, WEAGLEY R J. Hot-pressed polycrystalline CaF2:Dy2+ laser[J]. Appl Phys Lett, 1964, 5(8): 153-154.
[48] [48] GRESKOVICH C, CHERNOCH J P. Polycrystalline ceramic lasers[J]. J Appl Phys, 1973, 44(10): 4599-4606.
[49] [49] GRESKOVICH C, CHERNOCH J P. Improved polycrystalline ceramic lasers[J]. J Appl Phys, 1974, 45(10): 4495-4502.
[50] [50] DE G, VAN DIJK H J A. Translucent Y3Al5O12 ceramics[J]. Mater Res Bull, 1984, 19(12): 1669-1674.
[51] [51] SEKITA M, HANEDA H, YANAGITANI T, et al. Induced emission cross section of Nd:Y3Al5O12 ceramics[J]. J Appl Phys, 1990, 67: 453-458.
[52] [52] SEKITA M, HANEDA H, SHIRASAKI S, et al. Optical spectra of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12[J]. J Appl Phys, 1991, 69(6): 3709-3718.
[53] [53] IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers[J]. J Am Ceram Soc, 1995, 78(4): 1033-1040.
[54] [54] XU X J, SUN X D, LIU H, et al. Synthesis of monodispersed spherical yttrium aluminum garnet (YAG) powders by a homogeneous precipitation method[J]. J Am Ceram Soc, 2012, 95(12): 3821-3826.
[55] [55] ZHANG W X, PAN Y B, ZHOU J, et al. Diode-pumped Tm: YAG ceramic laser[J]. J Am Ceram Soc, 2009, 92(10): 2434-2437.
[56] [56] WU Y S, LI J A, PAN Y B, et al. Diode-pumped Yb:YAG ceramic laser[J]. J Am Ceram Soc, 2007, 90(10): 3334-3337.
[57] [57] LI J, WU Y S, PAN Y B, et al. Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics[J]. Opt Mater, 2008, 31(1): 6-17.
[58] [58] ZHANG W X, ZHOU J, LIU W B, et al. Fabrication, properties and laser performance of Ho:YAG transparent ceramic[J]. J Alloys Compd, 2010, 506(2): 745-748.
[59] [59] LI J, CHEN F, LIU W B, et al. Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics[J]. J Eur Ceram Soc, 2012, 32(11): 2971-2979.
[60] [60] ZHANG L X, LI X Y, HU D J, et al. Fine-grained Tb3Al5O12 transparent ceramics prepared by co-precipitation synthesis and two-step sintering[J]. Magnetochemistry, 2023, 9(2): 47 -60.
[61] [61] HUANG X Y, LIU Y M, LIU Y, et al. Fabrication and characterizations of Yb:YAG transparent ceramics using alcohol-water co-precipitation method[J]. J Inorg Mater, 2021, 36(2): 217-224.
[62] [62] ZHOU J, LIU Q, FENG W, et al. Upconversion luminescent materials: Advances and applications[J]. Chem Rev, 2015, 115(1): 395-465.
[63] [63] SUYVER J F, AEBISCHER A, BINER D, et al. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion[J]. Opt Mater, 2005, 27(6): 1111-1130.
[64] [64] BLASSE G, BRIL A. A new phosphor for flying-spot cathode-ray tubes for color television: Yellow-emitting Y3Al5O12-Ce3+[J]. Appl Phys Lett, 1967, 11(2): 53-55.
[65] [65] KOCH A, PEYRIN F, HEURTIER P, et al. X-ray camera for computed microtomography of biological samples with micrometer resolution using Lu3Al5O12 and Y3Al5O12 scintillators[C]//Medical Imaging '99. Proc SPIE 3659, Medical Imaging 1999: Physics of Medical Imaging, San Diego, CA, USA. 1999, 3659: 170-179.
[66] [66] ZHU Q Q, HAO L Y, XU X, et al. A novel solid-state synthesis of long afterglow, Si-N co-doped, Y3Al5O12:Ce3+ phosphor[J]. J Lumin, 2016, 172: 270-274.
[67] [67] IKESUE A. Ce:YAG ceramic scintillator for electron beam detector[J]. J Ceram Soc Jpn, 2000, 108: 1020-1023.
[68] [68] SUN B H, ZHANG L, ZHOU T Y, et al. Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs[J]. J Mater Chem C, 2019, 7(14): 4057-4065.
[69] [69] RAVICHANDRAN D, ROY R, CHAKHOVSKOI A G, et al. Fabrication of Y3Al5O12:Eu thin films and powders for field emission display applications[J]. J Lumin, 1997, 71(4): 291-297.
[70] [70] KRNER J, JAMBUNATHAN V, YUE F X, et al. Diode-pumped, electro-optically Q-switched, cryogenic Tm:YAG laser operating at 1.88 μm[J]. High Power Laser Sci Eng, 2021, 9(1): 107-112.
[71] [71] GONG H A, TANG D Y, HUANG H, et al. Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics[J]. J Am Ceram Soc, 2009, 92(4): 812-817.
[72] [72] TSUNEKANE M, TAIRA T. High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser[J]. Appl Phys Lett, 2007, 90(12): 121101
[73] [73] CHO G, KIM Y K, CHO S H, et al. Synthesis and Characterization of Doped Ceramic Scintillators Based on (Gd, Y)2O3/[C]// IEEE Nuclear Science Symposium Conference Record. Fajardo, PR, USA. IEEE, 2006: 1314-1317.
[74] [74] KIM Y K, KIM H K, KIM D K, et al. Synthesis of Eu-doped (Gd, Y)2O3 transparent optical ceramic scintillator[J]. J Mater Res, 2004, 19(2): 413-416.
[75] [75] LI X D, SUN X D, LI J G, et al. Characterization of high-gadolinium Y0.6Gd1.34Eu0.06O3 powder and fabrication of transparent ceramic scintillator using pressureless sintering[J]. Int J Appl Ceram Technol, 2010, 7(s1): 144-150
[76] [76] LU B, LI J G, SUZUKI T S, et al. Effects of Gd substitution on sintering and optical properties of highly transparent (Y0.95-xGdxEu0.05)2O3 ceramics[J]. J Am Ceram Soc, 2015, 98(8): 2480-2487.
[77] [77] LU B, LI J G, SUZUKI T S, et al. Controlled synthesis of layered rare‐earth hydroxide nanosheets leading to highly transparent (Y0.95Eu0.05)2O3 ceramics[J]. J Am Ceram Soc, 2015, 98: 1413-1422.
[78] [78] LIU W G, WU X L, ZHU Q, et al. The effects of sulfate anion exchange on structural feature and thermal behavior of Y2(OH)5NO3·nH2O layered hydroxide nanosheets[J]. Key Eng Mater, 2015, 633: 204-209.
[79] [79] LU B, LI J G, SUN X, et al. Fabrication and characterization of transparent (Y0.98?xTb0.02Eux)2O3 ceramics with color‐tailorable emission[J]. J Am Ceram Soc, 2015, 98(12): 3877-3883.
[80] [80] LU B, SUN Z G, WANG X Y, et al. Photoluminescent and scintillant properties of highly transparent [(Y1-xGdx)0.99Dy0.01]2O3 (x=0 and 0.4) ceramics[J]. J Am Ceram Soc, 2019, 102(8): 4773-4780.
[81] [81] LIU L L, WANG Q, GAO C J, et al. Dramatically enhanced luminescence of layered terbium hydroxides as induced by the synergistic effect of Gd3+ and organic sensitizers[J]. J Phys Chem C, 2014, 118(26): 14511-14520.
[82] [82] SHEN T T, ZHANG Y, LIU W S, et al. Novel multi-color photoluminescence emission phosphors developed by layered gadolinium hydroxide via in situ intercalation with positively charged rare-earth complexes[J]. J Mater Chem C, 2015, 3(8): 1807-1816.
[83] [83] CHU N K, SUN Y H, ZHAO Y S, et al. Intercalation of organic sensitisers into layered europium hydroxide and enhanced luminescence property[J]. Dalton Trans, 2012, 41(24): 7409-7414.
[84] [84] YOON Y S, BYEON S H, LEE I S. Unexplored thermal transformation behavior of two-dimensionally bound gadolinium hydroxide layers: Fabrication of oriented crystalline films of gadolinium oxychloride nanosheets suitable for the multicolor luminescence with color tunability[J]. Adv Mater, 2010, 22(30): 3272-3276.
[85] [85] LEE B I, LEE E S, BYEON S H. Assembly of layered rare-earth hydroxide nanosheets and SiO2 nanoparticles to fabricate multifunctional transparent films capable of combinatorial color generation[J]. Adv Funct Mater, 2012, 22(17): 3562-3569.
[86] [86] ZHU Q, DING S N, XIAHOU J Q, et al. A groundbreaking strategy for fabricating YAG:Ce3+ transparent ceramic films via sintering of LRH nanosheets on a sapphire substrate[J]. Chem Commun, 2020, 56(84): 12761-12764.
[87] [87] YAO J, ZHU Q, LI J G. Garnet transparent ceramic film of Y3Al5O12:Eu3+ fabricated through an interface reaction of layered rare-earth hydroxide nanosheets on amorphous alumina[J]. Appl Surf Sci, 2022, 579: 152226.
[88] [88] YAO J, CHEN L, ZHU Q, et al. Pressureless sintering of LRH nanoplates on amorphous alumina for near-infrared GAP:Mn4+ transparent ceramic film[J]. J Am Ceram Soc, 2023, 106(3): 1870-1880.
Get Citation
Copy Citation Text
GUO Hao, ZHANG Tao, ZHU Qi. Research Progress on Preparation of Transparent Ceramics Based on Layered Rare-Earth Hydroxides[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1100
Category:
Received: Aug. 29, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: Qi ZHU (zhuq@smm.neu.edu.cn)
CSTR:32186.14.