Semiconductor Optoelectronics, Volume. 44, Issue 2, 204(2023)
Theoretical Modeling of High Efficiency Organic Solar Cells
[1] [1] Li C, Zhou J, Song J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nature Energy, 2021, 6(6): 605-613.
[2] [2] Chai G, Chang Y, Zhang J, et al. Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency[J]. Energy & Environmental Science, 2021, 14(6): 3469-3479.
[3] [3] Abdalla H, van de Ruit K, Kemerink M. Effective temperature and universal conductivity scaling in organic semiconductors[J]. Scientific Reports, 2015, 5: 16870.
[4] [4] Massé A, Friederich P, Symalla F, et al. Ab initio charge-carrier mobility model for amorphous molecular semiconductors[J]. Phys. Rev. B, 2016, 93(19): 195209.
[5] [5] Oelerich J O, Nenashev A V, Dvurechenskii A V, et al. Field dependence of hopping mobility: Lattice models against spatial disorder[J]. Physical Rev. B, 2017, 96(19): 195208.
[6] [6] Kaiser W, Albes T, Gagliardi A. Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder[J]. Phys. Chem. Chem. Phys., 2018, 20(13): 8897-8908.
[7] [7] Pasveer W F, Cottaar J, Tanase C, et al. Unified description of charge-carrier mobilities in disordered semiconducting polymers[J]. Physical Rev. Lett., 2005, 94(20): 206601.
[8] [8] Nenashev A V, Oelerich J O, Dvurechenskii A V, et al. Fundamental characteristic length scale for the field dependence of hopping charge transport in disordered organic semiconductors[J]. Phys. Rev. B, 2017, 96(3): 035204.
[9] [9] Sun J X, Yang H C, Li Y, et al. Unified mobility model for diffusion-limited current in organic diodes based on Fermi-dirac statistics[J]. Phys. Rev. Appl., 2021, 16(3): 034037.
[10] [10] Lee Y, Jung S, Plews A, et al. Parametrization of the Gaussian disorder model to account for the high carrier mobility in disordered organic transistors[J]. Phys. Rev. Appl., 2021, 15(2): 024021.
[11] [11] Wan J, Chen Z, Zeng L, et al. Realizing high-performance organic solar cells through precise control of HOMO driving force based on ternary alloy strategy[J]. J. of Energy Chemistry, 2022, 65: 133-140.
[12] [12] Kuik M, Koster L J A, Wetzelaer G A H, et al. Trap-assisted recombination in disordered organic semiconductors[J]. Phys. Rev. Lett., 2011, 107(25): 256805.
[13] [13] Tress W, Merten A, Furno M, et al. Correlation of absorption profile and fill factor in organic solar cells: the role of mobility imbalance[J]. Adv. Energy Materials, 2013, 3(5): 631-638.
[14] [14] Sun L, Sun J X, Xiong C H, et al. Trap-assisted recombination in disordered organic semiconductors extended by considering density dependent mobility[J]. Solar Energy, 2016, 135: 308-316.
[15] [15] Koster L J A, Mihailetchi V D, Xie H, et al. Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells[J]. Appl. Phys. Lett., 2005, 87(20): 203502.
[16] [16] Yuan J, Zhang C, Qiu B, et al. Effects of energetic disorder in bulk heterojunction organic solar cells[J]. Energy & Environmental Science, 2022, 15(7): 2806-2818.
Get Citation
Copy Citation Text
DONG Junda, SUN Jiuxun. Theoretical Modeling of High Efficiency Organic Solar Cells[J]. Semiconductor Optoelectronics, 2023, 44(2): 204
Category:
Received: Nov. 11, 2022
Accepted: --
Published Online: Aug. 14, 2023
The Author Email: Junda DONG (1807926821@qq.com)