Journal of Applied Optics, Volume. 45, Issue 2, 337(2024)
WhatsApp compressed video source camera identification based on photo response nonuniformity
[1] Mingwang ZHANG, Yanhui XIAO, Huawei TIAN et al. Review of device fingerprint extraction techniques in image. Laser & Optoelectronics Progress, 57, 39-48(2020).
[2] J LUKAS, J FRIDRICH, M GOLJAN. Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1, 205-214(2006).
[3] A CORTIANA, V CONOTTER, G BOATO et al. Performance comparison of denoising filters for source camera identification. SPIE:Media Watermarking, Security, and Forensics III, 7880, 60-65(2011).
[4] X KANG, J CHEN, K LIN et al. A context-adaptive SPN predictor for trustworthy source camera identification. EURASIP Journal on Image and Video Processing, 2014, 1-11(2014).
[5] A LAWGALY, F KHELIFI. Sensor pattern noise estimation based on improved locally adaptive DCT filtering and weighted averaging for source camera identification and verification. IEEE Transactions on Information Foren-sics and Security, 12, 392-404(2016).
[6] H ZENG, Y WAN, K DENG et al. Source camera identification with dual-tree complex wavelet transform. IEEE Access, 18874-18883(2020).
[8] E ALTINISIK, K TASDEMIR, H T SENCAR. Mitigation of H. 264 and H. 265 video compression for reliable PRNU estimation. IEEE Transactions on Information Forensics and Security, 15, 1557-1571(2019).
[9] W H CHUANG, H SU, M WU. Exploring compression effects for improved source camera identification using strongly compressed video, 1953-1956(2011).
[10] E ALTINISIK, K TASDEMIR, H T SENCAR. Extracting PRNU noise from H. 264 coded videos, 1367-1371(2018).
[11] W C YANG, J JIANG, C H CHEN. A fast source camera identification and verification method based on PRNU analysis for use in video forensic investigations. Multimedia Tools and Applications, 80, 6617-6638(2021).
[12] K SU, N TIAN, Q PAN. Multimedia source identification using an improved weight photo response non-uniformity noise extraction model in short compressed videos. Forensic Science International:Digital Investigation, 42, 301473(2022).
[13] Wusheng TANG, Jinggao SUI, Xiaoya ZHANG et al. Research on optical image stabilizer based on optical correlator. Journal of Applied Optics, 35, 943-948(2014).
[14] H ZENG, X KANG. Fast source camera identification using content adaptive guided image filter. Journal of Forensic Sciences, 61, 520-526(2016).
[15] A J BARADARANI, Q M WU, M AHMADI. An efficient illumination invariant face recognition framework via illumination enhancement and DD-DTCWT filtering. Pattern Recognition, 46, 57-72(2013).
[16] I W SELESNICK, R G BARANIUK, N C KINGSBURY. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 22, 123-151(2005).
[17] G FAN, X G XIA. Image denoising using a local contextual hidden Markov model in the wavelet domain. IEEE Signal Processing Letters, 8, 125-128(2001).
[18] L SENDUR, I W SELESNICK. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, 50, 2744-2756(2002).
[19] D SHULLANI, M FONTANI, M IULIANI et al. Vision: a video and image dataset for source identification. EURASIP Journal on Information Security, 2017, 1-16(2017).
Get Citation
Copy Citation Text
Yihui CHEN, Nili TIAN, Qing PAN, Kaiqing SU. WhatsApp compressed video source camera identification based on photo response nonuniformity[J]. Journal of Applied Optics, 2024, 45(2): 337
Category: Research Articles
Received: Jun. 5, 2023
Accepted: --
Published Online: May. 28, 2024
The Author Email: TIAN Nili (田妮莉(1982—))