Chinese Optics Letters, Volume. 20, Issue 3, 031201(2022)

Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell [Invited]

Xiaonan Liu and Yufei Ma*
Author Affiliations
  • National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
  • show less
    References(39)

    [1] L. D. Prockop, R. I. Chichkova. Carbon monoxide intoxication: an updated review. J. Neurol. Sci., 262, 122(2007).

    [2] M. A. Khalil, R. A. Rasmussen. Carbon monoxide in the earth’s atmosphere: increasing trend. Science, 224, 54(1984).

    [3] H. Golmohamadi, R. Keypour, P. Mirzazade. Multi-objective co-optimization of power and heat in urban areas considering local air pollution. Eng. Sci. Technol., 24, 372(2021).

    [4] W. Q. Cao, Y. X. Duan. Breath analysis: potential for clinical diagnosis and exposure assessment. Clin. Chem., 52, 800(2006).

    [5] G. Lippi, G. Rastelli, T. Meschi, L. Borghi, G. Cervellin. Pathophysiology, clinics, diagnosis and treatment of heart involvement in carbon monoxide poisoning. Clin. Biochem., 45, 1278(2012).

    [6] Y. F. Ma, Y. Tong, Y. He, X. G. Jin, F. K. Tittel. Compact and sensitive mid-infrared all-fiber quartz-enhanced photo-acoustic spectroscopy sensor for carbon monoxide detection. Opt. Express, 27, 9302(2019).

    [7] Y. He, Y. F. Ma, Y. Tong, X. Yu, F. K. Tittel. A portable gas sensor for sensitive CO detection based on quartz-enhanced photoacoustic spectroscopy. Opt. Laser Technol., 115, 129(2019).

    [8] Q. D. Zhang, J. Chang, Z. H. Cong, Z. L. Wang. Application of quartz tuning fork in photodetector based on photothermal effect. IEEE Photonic. Tech. Lett., 31, 1592(2019).

    [9] Z. T. Lang, S. D. Qiao, Y. He, Y. F. Ma. Quartz tuning fork-based demodulation of an acoustic signal induced by photo-thermo-elastic energy conversion. Photoacoustics, 22, 100272(2021).

    [10] S. D. Qiao, Y. He, Y. F. Ma. Trace gas sensing based on single-quartz-enhanced photoacoustic-photothermal dual spectroscopy. Opt. Lett., 46, 2449(2021).

    [11] A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, F. K. Tittel. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett., 27, 1902(2002).

    [12] Y. F. Ma, Y. He, Y. Tong, X. Yu, F. K. Tittel. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt. Express, 26, 32103(2018).

    [13] A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, V. Spagnolo. Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes. Appl. Phys. Lett., 107, 231102(2015).

    [14] H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, F. K. Tittel. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nat. Commun., 8, 15331(2017).

    [15] T. N. Ba, M. Triki, G. Desbrosses, A. Vicet. Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 µm distributed feedback laser diode. Rev. Sci. Instrum., 86, 02311(2015).

    [16] K. Liu, X. Y. Guo, H. M. Yi, W. D. Chen, W. J. Zhang, X. M. Gao. Off-beam quartz-enhanced photoacoustic spectro-scopy. Opt. Lett., 34, 1594(2009).

    [17] P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, V. Spagnolo. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev., 5, 011106(2018).

    [18] Y. F. Ma, R. Lewicki, M. Razeghi, F. K. Tittel. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express, 21, 1008(2013).

    [19] S. D. Qiao, Y. F. Ma, P. Patimisco, A. Sampaolo, Y. He, Z. T. Lang, F. K. Tittel, V. Spagnolo. Multi-pass quartz-enhanced photoacoustic spectroscopy-based trace gas sensing. Opt. Lett., 46, 977(2021).

    [20] H. D. Zheng, Y. H. Liu, H. Y. Lin, B. Liu, X. H. Gu, D. Q. Li, B. C. Huang, Y. C. Wu, L. P. Dong, W. G. Zhu, J. Y. Tang, H. Y. Guan, H. H. Liu, Y. C. Zhong, J. B. Fang, Y. H. Luo, J. Zhang, J. H. Yu, Z. Chen, F. K. Tittel. Quartz-enhanced photoacoustic spectroscopy employing pilot line manufactured custom tuning forks. Photoacoustics, 17, 100158(2020).

    [21] Y. F. Ma, Y. H. Hong, S. D. Qiao, Z. T. Lang, X. N. Liu. H-shaped acoustic micro-resonator based quartz-enhanced photoacoustic spectroscopy. Opt. Lett.(2022).

    [22] Y. F. Ma, Y. He, X. Yu, C. Chen, R. Sun, F. K. Tittel. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork. Sens. Actuators B, 233, 388(2016).

    [23] T. T. Wei, A. Zifarelli, S. D. Russo, H. P. Wu, G. Menduni, P. Patimisco, A. Sampaolo, V. Spagnolo, L. Dong. High and flat spectral responsivity of quartz tuning fork used as infrared photodetector in tunable diode laser spectroscopy. Appl. Phys. Rev., 8, 041409(2021).

    [24] Y. He, Y. F. Ma, Y. Tong, X. Yu, F. K. Tittel. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Opt. Lett., 44, 1904(2019).

    [25] L. Hu, C. T. Zheng, M. H. Zhang, K. Y. Zheng, J. Zheng, Z. Song, X. Li, Y. Zhang, Y. D. Wang, F. K. Tittel. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy. Photoacoustics, 21, 100230(2021).

    [26] S. D. Qiao, Y. F. Ma, Y. He, P. Patimisco, A. Sampaolo, V. Spagnolo. Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL. Opt. Express, 29, 25100(2021).

    [27] S. D. Russo, A. Zifarelli, P. Patimisco, A. Sampaolo, T. T. Wei, H. P. Wu, L. Dong, V. Spagnolo. Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy. Opt. Express, 28, 19074(2020).

    [28] Y. Q. Hu, S. D. Qiao, Y. He, Z. T. Lang, Y. F. Ma. Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing. Opt. Express, 29, 5121(2021).

    [29] X. N. Liu, S. D. Qiao, Y. F. Ma. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky–Golay filtering. Opt. Express, 30, 1304(2022).

    [30] Y. F. Ma, Y. He, P. Patimisco, A. Sampaolo, S. D. Qiao, X. Yu, F. K. Tittel, V. Spagnolo. Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork. Appl. Phys. Lett., 116, 011103(2020).

    [31] C. Lou, X. Yang, X. Li, H. Chen, C. Chang, X. Liu. Graphene-enhanced quartz tuning fork for laser-induced thermoelastic spectroscopy. IEEE Sens. J., 21, 9819(2021).

    [32] C. G. Lou, H. J. Chen, X. T. Li, X. Yang, Y. Zhang, J. Q. Yao, Y. F. Ma, C. Chang, X. L. Liu. Graphene oxide and polydimethylsiloxane coated quartz tuning fork for improved sensitive near-and mid-infrared detection. Opt. Express, 29, 20190(2021).

    [33] T. Y. Zhang, J. W. Kang, D. Z. Meng, H. Wang, Z. M. Mu, M. Zhou, C. Chen. Mathematical methods and algorithms for improving near-infrared tunable diode-laser absorption spectroscopy. Sensors, 18, 4295(2018).

    [34] Y. F. Ma, Y. Q. Hu, S. D. Qiao, Y. He, F. K. Tittel. Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy. Photoacoustics, 20, 100206(2020).

    [35] X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser. Sensors, 16, 162(2016).

    [36] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E. J. Zak. The HITRAN 2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 203, 3(2017).

    [37] J. P. Waclawek, H. Moser, B. Lendl. Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide. Opt. Express, 24, 6559(2016).

    [38] W. Ren, A. Farooq, D. F. Davidson, R. K. Hanson. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 µm. Appl. Phys. B, 107, 849(2012).

    [39] Y. F. Ma, Y. Guang, J. B. Zhang, X. Yu, R. Sun. Sensitive detection of carbon monoxide based on a QEPAS sensor with a 2.3 µm fiber-coupled antimonide diode laser. J. Optics, 17, 055401(2015).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Xiaonan Liu, Yufei Ma. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell [Invited][J]. Chinese Optics Letters, 2022, 20(3): 031201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement, and Optical Sensing

    Received: Dec. 5, 2021

    Accepted: Dec. 29, 2021

    Published Online: Jan. 26, 2022

    The Author Email: Yufei Ma (mayufei@hit.edu.cn)

    DOI:10.3788/COL202220.031201

    Topics