Optical Communication Technology, Volume. 47, Issue 5, 16(2021)

Research progress on vibration signal recognition algorithm for optical fiber perimeter system

SHANG Qiufeng1,2,3 and GONG Biao1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(28)

    [1] [1] JUAREZ J C, TAYLOR H F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system[EB/OL].[2020-10-22]. https://www.osapublishing.org/ol/abstract.cfm?uri=ol-30-24-3284.

    [2] [2] JUAREZ J C, TAYLOR H F. Distributed fiber optic intrusion sensor system monitoring long perimeters[C]//SPIE. Proceedings of Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV. Bellingham: SPIE, 2005: 692-703.

    [4] [4] ALLWOOD G, WILD G, HINCKLEY S. Optical fiber sensors in physical intrusion detection systems: a review[J]. IEEE Sensors Journal, 2016, 16(14): 5497-5509.

    [5] [5] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Mathematical Physical & Engineering Ences, 1998, 454: 903-995.

    [7] [7] VILLAMIZAR-DELGADO S, RAMITE-CORTES J M, STEFANO A D, et al. Hybrid methodologies for modal parameters extraction for structural health monitoring[C]//IEEE. Proceedings of Communications & Computing. Cartagena: IEEE, 2016: 27-29.

    [10] [10] MARIE T F B, HAN D, AN B, et al. A research on fiber-optic vibration pattern recognition based on time-frequency characteristics[EB/OL].[2020-10-22]. https://journals.sagepub.com/doi/10.1177/1687814018813468.

    [12] [12] SEEDAHMED S M, JIM K. Robust event classification for a fiber optic perimeter intrusion detection system using level crossing features and artificial neural networks[EB/OL].[2020-10-22]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7677/1/Robust-event-classification-for-a-fiber-optic-perimeter-intrusion-detection/10.1117/12.849607.short.

    [13] [13] MAHMOUD S S, VISAGATHILAGAR Y, KATSIFOLIS J, et al. Real-time distributed fiber optic sensor for security systems: performance, event classification and nuisance mitigation[J]. Photonic Sensors, 2012, 2(3): 225-236.

    [14] [14] MAKARENKO A V. Deep learning algorithms for signal recognition in long perimeter monitoring distributed fiber optic sensors[C]//IEEE. Proceedings of international workshop on machine learning for signal processing. Salerno: IEEE, 2016: 1-6.

    [15] [15] XU C J, GUAN J J, BAO M, et al. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in Φ-OTDR[J]. Optical Engineering, 2018, 57(1): 016103-1-016103-7.

    [16] [16] METIN A, TOYGAR A, MEHMET U D, et al. Deep learning based threat classification in distributed acoustic sensing systems[C]//SPIE. Proceedings of Signal Processing & Communications Applications Conference. Anaheim: SPIE, 2017: 11-12.

    [17] [17] WANG Y, GONG D, PANG L, et al. RVFL-based optical fiber intrusion signal recognition with multi-level wavelet decomposition as feature[J]. Photonic Sensors, 2018, 8(3): 234-241.

    [19] [19] INCE T, KIRANYAZ S, EREN L, et al. Real-time motor fault detection by 1-D convolutional neural networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067-7075.

    [20] [20] WU H, CHEN J, LIU X, et al. 1-D CNN based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 2019(99): 1-1.

    [22] [22] YU Bai, XING Jichuan, XIE Fei, et al. Detection and identification of external intrusion signals from 33km optical fiber sensing system based on deep learning[EB/OL].[2020-10-22]. https://www.sciencedirect.com/science/article/abs/pii/S106852001930077X.

    [24] [24] LYU C, HUO Z, CHENG X, et al. Distributed optical fiber sensing intrusion patternrecognition based on GAF and CNN[J]. Journal of Lightwave Technology, 2020, 38(15):4174-4182.

    [25] [25] WANG Z, LOU S, WANG X, et al. Multi-branch long short-time memory convolution neural network for event identification in fiber-optic distributed disturbance sensor based on φ-OTDR[EB/OL].[2020-10-22].https://www.sciencedirect.com/science/article/abs/pii/S135044952030462X.

    [26] [26] XU C, GUAN J, BAO M, et al. Pattern recognition based on enhanced multifeature parameters for vibration events in φ-OTDR distributed optical fiber sensing system[J]. Microwave & Optical Technology Letters, 2017, 59(12): 3134-3141.

    [27] [27] CONG C, XINYU F, QINGWEN L, et al. Practical pattern recognition system for distributed optical fiber intrusion monitoring based on Ф-COTDR[J]. ZTE Communications, 2017, 15(3): 52-55.

    [29] [29] MA P, LIU K, JIANG J, et al. Probabilistic event discrimination algorithm for fiber optic perimeter security systems[J]. Journal of Lightwave Technology, 2018(99): 1-1.

    [32] [32] JIA H, LIANG S, LOU S, et al. A k-nearest neighbor algorithm-based near category support vector machine method for event identification of φ-OTDR[J]. IEEE Sensors Journal, 2019, 19(10): 3683-3689.

    [34] [34] ABUFANA S A, DALVEREN Y, AGHNAIVA A, et al. Variationa mode decomposition-based threat classification for fiber optic distributed acoustic sensing[J]. IEEE Access, 2020(99): 1-1.

    [35] [35] KIM K S, LEE K W. Visualization of 3D terrain information on smartphone using HTML5 webGL[J]. Korean Journal of Remote Sensing, 2012, 28(2): 245-253.

    [38] [38] SCARDAPANE S, WANG D. Randomness in neural networks: an overview[J]. Wires Data Mining Knowl Discov, 2017, 7(3-4): 1-18.

    [39] [39] GORBAN A N, TYUKIN I Y, PROKHOROV D V, et al. Approximation with random bases: pro et contra[J]. Information sciences, 2016, 365(10): 129-145.

    [40] [40] WANG D, LI M. Stochastic configuration networks: fundamentals and algorithms[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3466-3479.

    [41] [41] DIANHUI WANG, CAIHAO CUI. Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics[J]. Information Sciences, 2017(7): 1-20.

    [42] [42] LI W, ZENG Z, QU H, et al. A novel fiber intrusion signal recognition method for OFPS based on SCN with dropout[J]. Journal of Lightwave Technology, 2019, 37(20): 5221-5230.

    Tools

    Get Citation

    Copy Citation Text

    SHANG Qiufeng, GONG Biao. Research progress on vibration signal recognition algorithm for optical fiber perimeter system[J]. Optical Communication Technology, 2021, 47(5): 16

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 22, 2020

    Accepted: --

    Published Online: Sep. 2, 2021

    The Author Email: Biao GONG (752370706@qq.com)

    DOI:10.13921/j.cnki.issn1002-5561.2021.05.004

    Topics