Journal of the Chinese Ceramic Society, Volume. 50, Issue 2, 331(2022)
Research Progress on Quantum Dot-Sensitized Solar Cells
[2] [2] PAN Z, RAO H, MORA-SERO I, et al. Quantum dot-sensitized solar cells[J]. Chem Soc Rev, 2018, 47(20): 7659-7702.
[3] [3] WANG D, YIN F, DU Z, et al. Recent progress in quantum dot-sensitized solar cells employing metal chalcogenides[J]. J Mater Chem A, 2019, 46(7): 26205-26226.
[4] [4] NOZIK A J, BEARD M C, LUTHER J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chem Rev, 2010, 110(11): 6873-6890.
[5] [5] BEARD M C, LUTHER J M, SEMONIN O E, et al. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors[J]. Acc Chem Res, 2013, 46(6): 1252-1260.
[6] [6] LEE Y-L, LO Y-S, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe[J]. Adv Funct Mater, 2009, 19: 604-609.
[7] [7] LEE H, WANG M, CHEN P, et al. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process[J]. Nano Lett, 2009, 9(12): 4221-4227.
[8] [8] TIAN J, LV L, FEI C, et al. A highly efficient (>6%) Cd1-xMnxSe quantum dot sensitized solar cell[J]. J Mater Chem A, 2014, 2: 19653-19659.
[9] [9] SUN W-T, YU Y, PAN H-Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. J Am Chem Soc, 2008, 130(4): 1124-1125.
[10] [10] SANTRA P K, KAMAT P V, Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%[J]. J Am Chem Soc, 2012, 134(5): 2508-2511.
[11] [11] SANTRA P K, KAMAT P V, Tandem-layered quantum dot solar cells: Tuning the photovoltaic response with luminescent ternary cadmium chalcogenides[J]. J Am Chem Soc, 2013, 135(2): 877-885.
[12] [12] PAN Z, ZHANG H, CHENG K, et al. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells[J]. ACS Nano, 2012, 6: 3982-3991.
[13] [13] PAN Z, ZHAO K, WANG J, et al. Near infrared absorption of CdSexTe1-x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability[J]. ACS Nano, 2013, 7(6): 5215-5222.
[14] [14] ZHANG H, CHENG K, HOU Y M, et al. Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach[J]. Chem Commun, 2012, 48: 11235-11237.
[15] [15] WANG J, MORA-SERO I, PAN Z, et al. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells[J]. J Am Chem Soc, 2013, 135(42): 15913-15922.
[16] [16] JIAO S, WANG J, SHEN Q, et al. Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%[J]. J Mater Chem A, 2016(4): 7214-7221.
[17] [17] COUGHLAN C, IBANEZ M, DOBROZHAN O, et al. Compound copper chalcogenide nanocrystals[J]. Chem Rev, 2017, 117(9): 5865-6109.
[18] [18] HU X, ZHANG Q, HUANG X, et al. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells[J]. J Mater Chem, 2011, 21: 15903-15905.
[19] [19] KUO K-T, LIU D-M, CHEN S-Y, et al. Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency[J]. J Mater Chem, 2009, 19: 6780-6788.
[20] [20] MCDANIEL H, FUKE N, PIETRYGA J M, et al. Engineered CuInSexS2-x quantum dots for sensitized solar cells[J]. J Phys Chem Lett, 2013, 4(3): 355-361.
[21] [21] SANTRA P K, NAIR P V, THOMAS K G, et al. CuInS2-sensitized quantum dot solar cell. Electrophoretic deposition, excited-state dynamics, and photovoltaic performance[J]. J Phys Chem Lett, 2013, 4(5): 722-729.
[22] [22] MCDANIEL H, FUKE N, MAKAROV N S, et al. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells[J]. Nat Commun, 2013(4): 2887.
[23] [23] PAN Z, MORA-SERO I, SHEN Q, et al. High-efficiency “green” quantum dot solar cells[J]. J Am Chem Soc, 2014, 136(25): 9203-9210.
[24] [24] LI W, PAN Z, ZHONG X, CuInSe2 and CuInSe2-ZnS based high efficiency “green” quantum dot sensitized solar cells[J]. J Mater Chem A, 2015(3): 1649-1655.
[25] [25] WANG G, WEI H, SHI J, et al. Significantly enhanced energy conversion efficiency of cuins2 quantum dot sensitized solar cells by controlling surface defects[J]. Nano Energy, 2017, 35: 17-25.
[26] [26] KIM J-Y, YANG J, YU J H, et al. Highly efficient copper-indium-selenide quantum dot solar cells: Suppression of carrier recombination by controlled zns overlayers[J]. ACS Nano, 2015, 9(11): 11286-11295.
[27] [27] DU J, DU Z, HU J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11. 6%[J]. J Am Chem Soc, 2016, 138(12): 4201-4209.
[28] [28] PENG W, DU J, PAN Z, et al. Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells[J]. ACS Appl Mater Interfaces, 2017, 9(6): 5328-5336.
[29] [29] CHAUDHURI R G, PARIA S, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chem Rev, 2012, 112(4): 2373-2433.
[30] [30] LI T-L, LEE Y-L, TENG H, High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure[J]. Energy Environ Sci, 2012, 5: 5315-5324.
[31] [31] RAO H, ZHOU M, PAN Z, et al. Quantum dot materials engineering boosting the quantum dot sensitized solar cell efficiency over 13%[J]. J Mater Chem A, 2020(8): 10233-10241.
[32] [32] ZHANG X, DU Y, ZHOU Z, et al. A simplified method for synthesis of band-structure-controlled (CuIn)xZn2(1-x)S2 solid solution photocatalysts with high activity of photocatalytic H2 evolution under visible-light irradiation[J]. Int J Hydrogen Energy, 2010, 35(8): 3313-3321.
[33] [33] SONG H, LIN Y, ZHOU M, et al. Zn-Cu-In-S-Se quinary “green” alloyed quantum-dot-sensitized solar cells with a certified efficiency of 14.4%[J]. Angew Chem Int Ed, 2021, 60: 6137-6144.
[34] [34] GUIJARRO N, LANA-VILLARREAL T, MORA-SERO I, et al. CdSe quantum dot-sensitized TiO2 electrodes: Effect of quantum dot coverage and mode of attachment[J]. J Phys Chem C, 2009, 113(10): 4208-4214.
[35] [35] PAN Z, YUE L, RAO H, et al. Boosting the performance of environmentally friendly quantum dot-sensitized solar cells over 13% efficiency by dual sensitizers with cascade energy structure[J]. Adv Mater, 2019, 31: 1903696.
[36] [36] CHOI S, JIN H, BANG J, et al. Layer-by-layer quantum dot assemblies for the enhanced energy transfers and their applications toward efficient solar cells[J]. J Phys Chem Lett, 2012, 3(23): 3442-3447.
[37] [37] WANG W, ZHAO L, WANG Y, et al. Facile secondary deposition for improving quantum dot loading in fabricating quantum dot solar cells[J]. J Am Chem Soc, 2019, 141(10): 4300-4307.
[38] [38] SONG H, LIN Y, ZHANG Z, et al. Improving the efficiency of quantum dot sensitized solar cells beyond 15% via secondary deposition[J]. J Am Chem Soc, 2021, 143(12): 4790-4800.
Get Citation
Copy Citation Text
ZHANG Zhengyan, PAN Zhenxiao, ZHONG Xinhua. Research Progress on Quantum Dot-Sensitized Solar Cells[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 331
Special Issue:
Received: Aug. 21, 2021
Accepted: --
Published Online: Nov. 23, 2022
The Author Email: ZHANG Zhengyan (791332371@qq.com)
CSTR:32186.14.