Acta Optica Sinica, Volume. 41, Issue 18, 1823001(2021)

Design of Multi-Layer Gear-Shaped Metamaterial Absorber with Broadband and High Absorption

Yang Wang1, Xuefei Xuan1, Lu Zhu2, Jiabing Zhu1、*, Xiaobo Shen1、**, Yan Wu1, and Qiang Gao1
Author Affiliations
  • 1School of Electronic Engineering, Huainan Normal University, Huainan, Anhui 232038, China
  • 2School of Information Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
  • show less
    References(39)

    [1] Cui T J. Electromagnetic metamaterials: from effective media to field programmable systems[J]. Scientia Sinica (Informationis), 50, 1427-1461(2020).

    [2] Xiao S Y, Wang T, Liu T T et al. Active metamaterials and metadevices: a review[J]. Journal of Physics D: Applied Physics, 53, 503002(2020).

    [3] Zhang Y B, Yi Z, Wang X Y et al. Dual band visible metamaterial absorbers based on four identical ring patches[J]. Physica E: Low-Dimensional Systems and Nanostructures, 127, 114526(2021).

    [4] Chu Q H, Yang M S, Chen J et al. Characteristics of tunable terahertz multi-band absorber[J]. Chinese Journal of Lasers, 46, 1214003(2019).

    [5] Wang H S, Han K, Sun W et al. Design and experimental investigation of triple-band metamaterial broadband bandpass filter[J]. Acta Optica Sinica, 37, 0623001(2017).

    [6] Chu P X, Chen J X, Xiong Z G et al. Controllable frequency conversion in the coupled time-modulated cavities with phase delay[J]. Optics Communications, 476, 126338(2020).

    [7] Huang L, Chowdhury D R, Ramani S et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters, 37, 154-156(2012).

    [8] Wei W, Zhao Q, Shi X B. Preparation of gold nanoclusters by template method and applications in biomolecule biosensing[J]. Acta Laser Biology Sinica, 28, 296-304(2019).

    [9] Liu J, Chen W, Ma W Z et al. Ultra-broadband infrared absorbers using iron thin layers[J]. IEEE Access, 8, 43407-43412(2020).

    [10] Qin Z, Meng D J, Yang F M et al. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators[J]. Optics Express, 29, 20275-20285(2021).

    [11] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [12] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [13] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 40, 0816001(2020).

    [14] Shen X P, Cui T J, Zhao J M et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 19, 9401-9407(2011).

    [15] Liu Y Y, Liu H, Liu K et al. Ultra-broadband perfect absorber with rectangular multilayer structure[J]. Acta Optica Sinica, 40, 2323001(2020).

    [16] Zhou Y, Liang Z Z, Qin Z et al. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity[J]. Optics Express, 28, 1279-1290(2020).

    [17] Abbas M N, Cheng C W, Chang Y C et al. Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2[J]. Applied Physics Letters, 98, 121116(2011).

    [19] Yang S, Yuan S, Wang J Y. Light-excited and switchable dual-band terahertz metamaterial absorber[J]. Acta Optica Sinica, 41, 0216001(2021).

    [20] Li C, Xiao Z Y, Ling X Y et al. Broadband visible metamaterial absorber based on a three-dimensional structure[J]. Waves in Random and Complex Media, 29, 403-412(2019).

    [21] Nejat M, Nozhat N. Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene[J]. IEEE Transactions on Nanotechnology, 18, 684-690(2019).

    [22] Cong J W, Zhou Z Q, Yun B F et al. Broadband visible-light absorber via hybridization of propagating surface plasmon[J]. Optics Letters, 41, 1965-1968(2016).

    [23] Hoa N T Q, Lam P H, Tung P D et al. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region[J]. IEEE Photonics Journal, 11, 1-8(2019).

    [24] Wu D, Liu C, Liu Y M et al. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion[J]. RSC Advances, 8, 21054-21064(2018).

    [25] Lei L, Li S, Huang H X et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial[J]. Optics Express, 26, 5686-5693(2018).

    [26] Ding F, Jin Y, Li B R et al. Ultrabroadband strong light absorption based on thin multilayered metamaterials[J]. Laser & Photonics Reviews, 8, 946-953(2014).

    [27] Yi Z, Li J K, Lin J C et al. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array[J]. Nanoscale, 12, 23077-23083(2020).

    [28] Li J K, Chen X F, Yi Z et al. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays[J]. Materials Today Energy, 16, 100390(2020).

    [29] Smith D R, Dalichaouch R, Kroll N et al. Photonic band structure and defects in one and two dimensions[J]. Journal of the Optical Society of America B, 10, 314-321(1993).

    [30] Palik E D[M]. Handbook of optical constants of solids II(1985).

    [31] Liu J, Chen W, Zheng J C et al. Wide-angle polarization-independent ultra-broadband absorber from visible to infrared[J]. Nanomaterials, 10, E27(2019).

    [32] Ding F, Dai J, Chen Y T et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 6, 39445(2016).

    [33] Cao Y H, Zhang S W, Sun X D et al. Light-trapping effect of sub-wavelength metal trapezoidal groove array[J]. Laser & Optoelectronics Progress, 56, 202416(2019).

    [34] Li Z B, Yang Y H, Kong X T et al. Fabry-Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit[J]. Journal of Optics A: Pure and Applied Optics, 11, 105002(2009).

    [35] Hu S, Yang S Y, Liu Z et al. Broadband and polarization-insensitive absorption based on a set of multisized Fabry-Perot-like resonators[J]. The Journal of Physical Chemistry C, 123, 13856-13862(2019).

    [36] Smith D R, Schultz S, Markoš P et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 65, 195104(2002).

    [37] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000).

    [38] Qin F, Chen X F, Yi Z et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure[J]. Solar Energy Materials and Solar Cells, 211, 110535(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yang Wang, Xuefei Xuan, Lu Zhu, Jiabing Zhu, Xiaobo Shen, Yan Wu, Qiang Gao. Design of Multi-Layer Gear-Shaped Metamaterial Absorber with Broadband and High Absorption[J]. Acta Optica Sinica, 2021, 41(18): 1823001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Feb. 2, 2021

    Accepted: Apr. 8, 2021

    Published Online: Sep. 3, 2021

    The Author Email: Zhu Jiabing (zjb3617@163.com), Shen Xiaobo (shenhnnu@163.com)

    DOI:10.3788/AOS202141.1823001

    Topics