Optics and Precision Engineering, Volume. 26, Issue 8, 1938(2018)
In-motion monitoring of atmospheric methane and ethane using a mid-infrared dual-gas simultaneous detection sensor
[1] [1] BRANDT A R, HEATH G A, COOLEY D. Methane leaks from natural gas systems follow extreme distributions[J]. Environmental Science & Technology, 2016, 50: 12512-12520.
[2] [2] BAMBERGER I, STIEGER J, BUCHMANN N, et al.. Spatial variability of methane: Attributing atmospheric concentrations to emissions[J]. Environmental Pollution, 2014, 190: 65-74.
[3] [3] SMITH F A, ELLIOTT S, BLAKE D R, et al.. Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico[J]. Environmental Science & Policy, 2002, 5(6): 449-461.
[4] [4] SIMPSON I J, ROWLAND F S, MEINARDI S, et al.. Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane[J]. Geophysical Research Letters, 2006, 33(22): L22808.
[5] [5] XIAO Y, LONGAN J A, JACOB D J, et al.. Global budget of ethane and regional constraints on U.S. sources[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D21): D21306.
[6] [6] ETIOPE G, CICCIOOO P. Earth's degassing: a missing ethane and propane source [J]. Science, 2009, 323(5913): 478.
[7] [7] SIMPSON I, ANDERSEN M, MEINARDI S, et al.. Long-term decline of global atmospheric ethane concentrations and implications for methane [J]. Nature, 2012, 488(7412): 490-494.
[8] [8] NICEWONGER M, VEERHULAST K, AYDIN M, et al.. Preindustrial atmospheric ethane levels inferred from polar ice cores: a constraint on the geologic sources of atmospheric ethane and methane [J]. Geophysical Research Letters, 2016, 43(1): 214-221.
[9] [9] TASSI F, VENTURI S, CABASSI J, et al.. Volatile organic compounds (VOCs) in soil gases from Solfatara crater (Campi Flegrei, southern Italy): Geogenic source(s) vs. biogeochemical processes [J]. Applied Geochemistry, 2015, 56: 37-49.
[10] [10] DONG L, TITTEL F K, LI C, et al.. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing [J]. Optics Express, 2016, 24: A528-A535.
[13] [13] DONG M, ZHENG C, MIAO S, et al.. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection[J]. Sensors, 2017, 17(10): 2221.
[14] [14] LIU K, MEI J, ZHANG W, et al.. Multi-resonator photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical, 2017, 251: 632-636.
[15] [15] DONG L, LI C, SANCHEZ N P, et al.. Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser[J]. Applied Physics Letters, 2016, 108: 011106.
[16] [16] MA Y, HE Y, ZHANG Y, et al.. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork[J]. Applied Physics Letters,2017, 110: 121104.
[17] [17] SANCHEZ N P, ZHENG C, YE W, et al.. Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area[J]. Atmospheric Environment, 2018, 176: 261-273.
Get Citation
Copy Citation Text
YE Wei-lin, ZHOU Bo, YU Hong-zhi, MENG Yong-xian, ZHENG Chuan-tao. In-motion monitoring of atmospheric methane and ethane using a mid-infrared dual-gas simultaneous detection sensor[J]. Optics and Precision Engineering, 2018, 26(8): 1938
Category:
Received: Apr. 24, 2018
Accepted: --
Published Online: Oct. 2, 2018
The Author Email: Wei-lin YE (wlye@stu.edu.cn)