Semiconductor Optoelectronics, Volume. 45, Issue 2, 167(2024)
Research Progress of Broadband and Narrowband Organic Photomultiplication Detectors
[1] [1] Kim K Y, Yoon S H, Kim I K, et al. Flexible narrowband organic photodiode with high selectivity in color detection[J].Nanotechnol., 2019, 30(43): 435203.
[2] [2] Cao G Q, Wang F, Peng M, et al.. Multicolor broadband and fast photodetector based on InGaAs-insulator-graphene hybrid heterostructure[J]. Advanced Electronic Materials, 2020, 6(3): 1901007.
[3] [3] Jansen-Van Vuuren R D, Armin A, Pandey A K, et al.Organic photodiodes: The future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.
[4] [4] Liu X D, Lin Y W, Liao Y J, et al. Recent advances in organic near-infrared photodiodes [J]. J. of Materials Chemistry C, 2018, 6(14): 3499-3513.
[5] [5] Miao J L, Zhang F J. Recent progress on photomultiplication type organic photodetectors[J]. Laser & Photonics Reviews,2019, 13(2): 1800204.
[6] [6] Ren H, Chen J D, Li Y Q, et al. Recent progress in organic photodetectors and their applications[J]. Adv. Science, 2021,8(1): 2002418.
[7] [7] Yang K X, Wang J, Zhao Z J, et al. Smart strategy:Transparent hole-transporting polymer as a regulator to optimize photomultiplication-type polymer photodetectors[J].ACS Appl. Materials & Interfaces, 2021, 13(18): 21565-21572.
[8] [8] Baeg K J, Binda M, Natali D, et al. Organic light detectors:photodiodes and phototransistors[J]. Advanced Materials.,2013, 25(31): 4267-4295.
[9] [9] Zhao Z J, Li C L, Shen L, et al. Photomultiplication type organic photodetectors based on electron tunneling injection[J]. Nanoscale, 2020, 12(2): 1091-1099.
[10] [10] Kim K Y, Yoon S H, Kim I K, et al. Flexible narrowband organic photodiode with high selectivity in color detection[J].Nanotechnol., 2019, 30(43): 435203.
[11] [11] Miao J L, Zhang F J. Recent progress on photomultiplication type organic photodetectors[J]. Laser & Photonics Reviews,2019, 13(2): 1800204.
[12] [12] Xiao Z, Xu H T, Liang W Y, et al. Effective film surface treatment for improving external quantum efficiency of photomultiplication type organic photodetector[J]. High Performance Polymers, 2021, 33(9): 1093-1105.
[13] [13] Yang K X, Wang J, Zhao Z J, et al. Smart strategy:Transparent hole-transporting polymer as a regulator to optimize photomultiplication-type polymer photodetectors[J]. ACS Appl. Materials & Interfaces, 2021, 13(18):21565-21572.
[14] [14] Wang Y Z, Kublitski J, Xing S, et al. Narrowband organic photodetectors-towards miniaturized, spectroscopic sensing[J]. Materials Horizons, 2022, 9(1): 220-251.
[15] [15] Zhao Z J, Xu C Y, Ma Y, et al. Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry-Pérot resonator architecture [J]. Advanced Functional Materials, 2022, 32(29): 2203606.
[16] [16] Kim J H, Liess A, Stolte M, et al. An efficient narrowband near-infrared at 1040nm organic photodetector realized by intermolecular charge transfer mediated coupling based on a squaraine dye[J]. Advanced Materials, 2021, 33(26):2100582.
[17] [17] Liu J S, Jiang J Z, Wang S P, et al. Fast response organic tandem photodetector for visible and near-infrared digital optical communications[J]. Small, 2021, 17(43): 2101316.
[18] [18] Shi L, Liang Q, Wang W, et al. Research progress in organic photomultiplication photodetectors [J].Nanomaterials, 2018, 8(9): 713.
[19] [19] Hiramoto M, Imahigashi T, Yokoyama M. Photocurrent multiplication in organic pigment films[J]. Appl. Phys.Lett., 1994, 64(2): 187-189.
[20] [20] Chen F C, Chien S C, Cious G L. Highly sensitive, lowvoltage,organic photomultiple photodetectors exhibiting broadband response[J]. Appl. Phys. Lett., 2010, 97(10):103301.
[21] [21] Huang J S, Guo F W, Yang B, et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection[J]. Nature Nanotechnol., 2012, 7(12):798-802.
[22] [22] Chuang S T, Chien S C, Chen F C. Extended spectral response in organic photomultiple photodetectors using multiple near-infrared dopants[J]. Appl. Phys. Lett.,2012, 100(1): 013309.
[23] [23] Hammond W T, Xue J G. Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain[J]. Appl. Phys. Lett., 2010, 97(7):073302.
[24] [24] Luo X, Lv W L, Du L L, et al. Insight into trap state dynamics for exploiting current multiplication in organic photodetectors[J]. Physica Status Solidi (RRL)-Rapid Research Lett., 2016, 10(6): 485-492.
[25] [25] Kublitski J, Fischer A, Xing S, et al. Enhancing subbandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors[J].Nature Communications, 2021, 12(1): 4259.
[26] [26] Fang Y J, Guo F W, Xiao Z G, et al. Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120dB[J]. Advanced Optical Materials,2014, 2(4): 348-353.
[27] [27] Wei H T, Fang Y J, Yuan Y B, et al. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT∶CdTe nanocomposite photodetectors[J]. Advanced Materials, 2015, 27(34): 4975-4981.
[28] [28] Shen L, Fang Y J, Dong Q F, et al. Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection[J]. Appl. Phys.Lett., 2015, 106(2): 023301.
[29] [29] Dong R, Bi C, Dong Q F, et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain [J].Advanced Optical Materials, 2014, 2(6): 549-554.
[30] [30] Zhu T, Zheng L Y, Yao X, et al. Ultrasensitive solutionprocessed broadband PbSe photodetectors through photomultiplication effect[J]. ACS Appl. Mater. Interfaces,2019, 11(9): 9205-9212.
[31] [31] Guo D C, Yang L Q, Li J, et al. Panchromatic photomultiplication-type organic photodetectors with planar/bulk heterojunction structure[J]. Science China Materials,2022, 66(3): 1172-1179.
[32] [32] Li L L, Zhang F J, Wang W B, et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37,500% [J]. ACS Appl.Mater. Interfaces, 2015, 7(10): 5890-5897.
[33] [33] Wang W B, Zhang F J, Bai H T, et al. Photomultiplication photodetectors with P3HT∶fullerene-free material as the active layers exhibiting a broad response[J]. Nanoscale,2016, 8(10): 5578-5586.
[34] [34] Yang K X, Wang J, Zhao Z J, et al. Ultraviolet to nearinfrared broadband organic photodetectors with photomultiplication[J]. Organic Electronics, 2020, 83:105739.
[35] [35] Liu M, Miao J L, Wang J, et al. Broadband organic photodetectors exhibiting photomultiplication with a narrow bandgap non-fullerene acceptor as an electron trap[J]. J. of Materials Chemistry C, 2020, 8(29): 9854-9860.
[37] [37] Yang K X, Zhao Z J, Liu M, et al. Highly sensitive broadband photomultiplication type all-polymer photodetectors and their applications in optical pulse counting[J]. J. of Materials Chemistry C, 2022, 10(30): 10888-10894.
[38] [38] Zhao Z J, Wang J, Xu C Y, et al. Photomultiplication type broad response organic photodetectors with one absorber layer and one multiplication layer[J]. J. Phys. Chem.Lett., 2020, 11(2): 366-373.
[39] [39] Liu M Y, Wang J, Yang K X, et al. Broadband photomultiplication organic photodetectors[J]. Phys. Chem.Chem. Phys., 2021, 23(4): 2923-2929.
[40] [40] Liu M, Wang J, Yang K X, et al. Highly sensitive, broadband organic photomultiplication-type photodetectors covering UV-Vis-NIR[J]. J. Mater. Chem. C, 2021, 9(19): 6357-6364.
[41] [41] Liu M, Fan Q P, Wang J, et al. Double-layered strategy for broadband photomultiplication-type organic photodetectors and achieving narrowband response in violet, red, and nearinfrared light[J]. ACS Appl. Mater. Interfaces, 2022, 14(40): 45636-45643.
[42] [42] Wang W B, Zhang F J, Du M D, et al. Highly narrowband photomultiplication type organic photodetectors[J]. Nano Lett., 2017, 17(3): 1995-2002.
[43] [43] Armin A, Vuuren R D J-V, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes[J]. Nature Communications, 2015, 6(1): 6343.
[44] [44] Xie B M, Xie R H, Zhang K, et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation [J].Nature Communications, 2020, 11(1): 2871.
[45] [45] Shen L, Fang Y J, Wei H T, et al. A highly sensitive narrowband nanocomposite photodetector with gain[J].Advanced Materials, 2016, 28(10): 2043-2048.
[46] [46] Shen L, Zhang Y, Bai Y, et al. A filterless, visible-blind,narrow-band, and near-infrared photodetector with a gain[J]. Nanoscale, 2016, 8(26): 12990-12997.
[47] [47] Miao J L, Zhang F U, Du M D, et al. Photomultiplication type narrowband organic photodetectors working at forward and reverse bias[J]. Phys. Chem. Chem. Phys., 2017, 19(22): 14424-14430.
[48] [48] Liu M, Wang J, Zhao Z J, et al. Ultra-narrow-band NIR photomultiplication organic photodetectors based on charge injection narrowing[J]. J. Phys. Chem. Lett., 2021, 12(11): 2937-2943.
[50] [50] Guo D C, Yang L Q , Zhao J C , et al. Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1000000[J]. Mater. Horiz., 2021, 8(8): 2293-2302.
[51] [51] Zhao Z J, Liu M, Yang K X, et al. Highly sensitive narrowband photomultiplication-type organic photodetectors prepared by transfer-printed technology [J]. Advanced Functional Materials, 2021, 31(43): 2106009.
[52] [52] Liu M, Yang K X, Zhao Z J, et al. Narrowband photomultiplication organic photodetectors by employing phosphorescent material as optical field adjusting layer[J].The J. of Physical Chemistry C, 2021, 125(33): 18536-18542.
[53] [53] Zhao Z J, Xu C Y, Ma Y, et al. Filter-free narrowband photomultiplication-type planar heterojunction organic photodetectors[J]. Advanced Functional Materials, 2022, 33(9): 2212149.
[54] [54] Zhao Z J, Xu C Y, Ma Y, et al. Ultraviolet narrowband photomultiplication type organic photodetectors with Fabry-Pérot resonator architecture [J]. Advanced Functional Materials, 2022, 32(29): 2203606.
[55] [55] Jiao J, Zhang Y, Shi L L, et al. High responsivity of narrowband photomultiplication organic photodetector via interfacial modification[J]. Advanced Optical Materials,2023, 11(12): 2203132.
Get Citation
Copy Citation Text
LI Yao, LAN Jun, WANG Fenqiang, WANG Ailing, NIU Ruixia, LIU Liangpeng, ZHANG Pengjie, WU Huizhou, ZHANG Xuying. Research Progress of Broadband and Narrowband Organic Photomultiplication Detectors[J]. Semiconductor Optoelectronics, 2024, 45(2): 167
Category:
Received: Nov. 2, 2023
Accepted: --
Published Online: Aug. 14, 2024
The Author Email: