Chinese Journal of Quantum Electronics, Volume. 31, Issue 3, 264(2014)
Symmetry reduction and exact solutions of generalized fourth-order dispersive equation
[1] [1] He J H, Wu X H. Exp-function method for nonlinear wave equation [J]. Chaos Solitons and Fractals, 2006, 3(11): 700-708.
[2] [2] Wang M L. Exact solutions of a compound KdV-Burgers equation [J]. Phys. Lett. A, 1996, 213(5): 279-287.
[3] [3] Liu J, Yang K. The extended F-expansion method and exact solutions of nonlinear PDEs [J].Chaos Solitons Fractals, 2004, 22(1): 111-121.
[4] [4] Wazwaz A M. The tanh method for travelling wave solution of nonlinear wave equations [J]. Appl. Math. Comput., 2007, 187(2): 1131-1142.
[5] [5] Fan E G, Zhang J. Applications of the Jacobi elliptic function method to special-type nonlinear equations [J]. Phys. Lett. A, 2002, 305(6): 383-392.
[6] [6] Fu Z T, Liu S K, Liu S D, et al. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J]. Phys. Lett. A, 2001, 290(1): 72-76.
[7] [7] Xin X P, Liu X Q, Zhang L L. Explicit solutions of the BK equation [J]. Applied Mathematics and Computation, 2010, 215(10): 3669-3673.
[8] [8] Liu N, Liu X Q. Similarity reductions and similarity solutions of the (3+1)-dimensional Kadomtsev-Petviashvili equation [J]. Chinese Physics Letters, 2008, 25(10): 3527-3530.
[9] [9] Wang L, Liu X Q, Dong Z Z. Study of (2+1)-dimensional higher-order Broer-Kaup system [J]. Communications in Theoretical Physics, 2007, 47(3): 403-408.
[12] [12] Miao Q, Xin X P, Chen Y. Nonlocal symmetries and explicit solutions of the AKNS system [J]. Applied Mathematics Letters, 2014, 28 : 7-13.
[13] [13] Wazwaz A M. Compactons in a class of nonlinear dispersive equations [J]. Mathematical and Computer Modelling, 2003, 37(3) : 333-341.
[14] [14] Johnpillai A G, Khalique C M, Biswas A. Exact solutions of KdV equation with time-dependent coefficients [J]. Applied Mathematics and Computation, 2010, 21(10): 3114-3119.
[15] [15] Nail H. Ibragimov. A new conservation theorem [J]. Math. Anal. Appl., 2007, 333(1): 311-328.
[16] [16] Xin X P, Liu X Q, Zhang L L, Symmetry reduction, exact solutions and conservation laws of the Sawada-Kotera-Kadomtsev-Petviashvili equation [J]. Applied Mathematics and Computation, 2010, 21(4):1065-1071.
[17] [17] Wang G W , Liu X Q, Zhang Y Y, Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation [J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18: 2313-2320.
Get Citation
Copy Citation Text
WANG Zhen-li, LIU Xi-qiang. Symmetry reduction and exact solutions of generalized fourth-order dispersive equation[J]. Chinese Journal of Quantum Electronics, 2014, 31(3): 264
Category:
Received: Dec. 16, 2013
Accepted: --
Published Online: Jun. 3, 2014
The Author Email: Zhen-li WANG (rr101014@163.com)