Acta Optica Sinica, Volume. 42, Issue 17, 1730001(2022)

Spectral Imaging for Lunar Orbit Exploration: Research Status and Technical Challenges

Zhiping He1,2、*, Yuhua Gui1,2, Jinning Li1,2, Lü Gang1,2, Rui Xu1,2, and Meizhu Wang1、**
Author Affiliations
  • 1Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(8)
    [in Chinese]
    Major lunar remote sensing imaging spectrometer under development. (a) HVM3[14]; (b) LTM[14]; (c) WIRIS
    Challenges in imaging spectral detection of faint targets in lunar polar region
    Diagram of impact crater at the lunar south pole and its topography. (a) Shackleton impact crater; (b) elevation map of impact crater profile acquired by LOLA altimeter
    Schematic diagram of CRISM motion compensation mode[23]
    Example of a typical mid- and long-wave infrared background suppression spectrometer. (a) CRISM multi-temperature zone low temperature and spoke cooling temperature control[23]; (b) structural diagram of airborne thermal infrared hyperspectral imager[30]
    • Table 1. Performance comparison of current and subsequent major imaging spectrometer payloads for lunar exploration

      View table

      Table 1. Performance comparison of current and subsequent major imaging spectrometer payloads for lunar exploration

      Payload

      IIM/China/

      CE-1

      M3/India/

      Chandrayaan-1

      Diviner/USA/

      LRO

      IIRS/India/

      Chandrayaan-2

      HVM3/USA/ Lunar Trailblazer

      LTM/UK/

      Lunar Trailblazer

      WIRIS/China/

      CE-7

      Time2007200820092019~2025~2025~2025
      Spectral range /μm0.48-0.960.43-3.00.35-4000.8-5.00.6-3.6

      7.0-10.0,

      6-100

      0.45-10.0

      Spectral

      resolution /nm

      7.62(at 0.48 μm),0.48

      29(at 0.96 μm)

      ~1520-25~15

      <0.5(at

      7-10 μm)

      ≤10(at 0.45-3.0 μm),

      ≤0.2(at 3.0-10 μm)

      Number of

      spectral bands

      322569160≥500
      Performance

      SNR is ≥100(60°

      solar elevation

      angle and

      ρ=0.2)

      SNR is ≥100

      (10° solar

      elevation angle,

      Apollo16

      sampling area,

      1.44×1011 m)

      -

      NEdR is

      0.001-0.005 mW·cm-2·sr-1·μm-1

      SNR is >100 for specific areaNETD is ≤±2 K at 110-400 K

      ≥150(30°solar

      elevation angle,

      ρ=0.1,0.45-3.0 μm);

      NETD is ≤

      ±0.5 K at 200-400 K

      Imaging field

      of view

      7.3º24º

      6.7 mrad in-track,

      3.4 mrad cross track

      11.4º24º6.3°≥3.8°

      Instantaneous

      field-of-view

      (IFOV)/mrad

      1

      (resolution is 200 m at 200 km)

      0.7

      (resolution is 70 m at 100 km)

      0.4

      (resolution is 40 m at 100 km)

      0.7

      (resolution is 70 m at

      100 km)

      0.25

      (resolution is

      25 m at 100 km)

      ≤0.2(0.45-3 μm)

      ≤0.3(3.0-10 μm)

      Swath

      width /km

      25.6(at

      200 km)

      40(at 100 km)

      3.4(at

      50 km)

      20(at 100 km)

      ~2.7(at

      30 km),~9(at 100 km)

      Scanning functionN/AN/AN/AN/AN/AN/AMotion compensation
    • Table 2. Performance comparison of high-resolution imaging spectrometer payloads based on motion compensation

      View table

      Table 2. Performance comparison of high-resolution imaging spectrometer payloads based on motion compensation

      PayloadAHSI/China/GF-5CRISM/USA/MROMARJIS/Europe/JUICELEISA of L′Ralph/USA/Lucy
      Time20182005~2022(launch)2021(launch)
      Observation targetEarthMarsJupiter’s icy moonsA main belt asteroid and seven Trojans
      Spectral range /μm0.39-2.510.36-3.920.4-5.71.0-3.8
      IFOV /mrad0.040.06150.1250.08
      Orbit

      705 km

      (quasi-circular)

      255 km/320 km

      (quasi-circular)

      Motion compensation implementationReflective mirror scanning

      Spectrometer scanning

      (with gimbal)

      Reflective mirror scanningReflective mirror scanning
    Tools

    Get Citation

    Copy Citation Text

    Zhiping He, Yuhua Gui, Jinning Li, Lü Gang, Rui Xu, Meizhu Wang. Spectral Imaging for Lunar Orbit Exploration: Research Status and Technical Challenges[J]. Acta Optica Sinica, 2022, 42(17): 1730001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Jun. 6, 2022

    Accepted: Jun. 30, 2022

    Published Online: Sep. 16, 2022

    The Author Email: He Zhiping (hzping@mail.sitp.ac.cn), Wang Meizhu (mzhwang@mail.sitp.ac.cn)

    DOI:10.3788/AOS202242.1730001

    Topics