Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 1000(2023)

In-situ Hydrothermal Growth of Dense Ceria Based Barrier Layer for Solid Oxide Fuel Cells

ZHAO Haoyu*, LYU Qiuqiu, CHENG Liya, WU Shenglong, ZHU Tenglong, and ZHONG Qin
Author Affiliations
  • [in Chinese]
  • show less
    References(20)

    [1] [1] MATSUDA J, KANAE S, SASAKI K, et al. TEM and ETEM study of SrZrO3 formation at LSCF/GDC/YSZ interfaces[J]. ECS Trans, 2017, 78(1): 993-1001.

    [2] [2] NURK G, VESTLI M, MLLER P, et al. Mobility of Sr in gadolinia doped ceria barrier layers prepared using spray pyrolysis, pulsed laser deposition and magnetron sputtering methods[J]. J Electrochem Soc, 2016, 68(1): 1757-1763.

    [3] [3] NI D, ESPOSITO V. Densification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reaction[J]. J Power Sources, 2014, 266: 393-400.

    [4] [4] JUNG D W, KWAK C, SEO S, et al. Role of the gadolinia-doped ceria interlayer in high-performance intermediate-temperature solid oxide fuel cells[J]. J Power Sources, 2017, 361: 153-159.

    [5] [5] SHIONO M, KOBAYASHI K, NGUYEN T L, et al. Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr)CoO3 cathode for low-temperature SOFCs[J]. Solid State Ion, 2004, 170(1-2): 1-7.

    [6] [6] BLUM L, DE HAART L, MALZBENDER J, et al. Anode-supported solid oxide fuel cell achieves 70 000 hours of continuous operation[J]. Energy Technol, 2016, 4: 939-942.

    [7] [7] BERNADET L, SEGURA-RUIZ J, YEDRA L, et al. Enhanced diffusion barrier layers for avoiding degradation in SOFCs aged for 14 000 h during 2 years[J]. J Power Sources, 2023, 555: 232400.

    [8] [8] UDOMSILP D, LENSER C, GUILLON O, et al. Performance benchmark of planar solid oxide cells based on material development and design[J]. Energy Technol, 2021, 9(4): 2001062.

    [9] [9] MOGENSEN M B, CHEN H, FRANDSEN H L, et al. Reversible solid-oxide cells for clean and sustainable energy[J]. Clean Energy, 2019, 3(3): 175-201.

    [10] [10] LENSER C, UDOMSILP D, MENZIER N H, et al. Solid oxide fuel and electrolysis cells[M]//Advanced Ceramics for Energy Conversion and Storage. Elsevier, 2019.

    [11] [11] WILDE V, STRMER H, SZSZ J, et al. Gd0.2Ce0.8O2 diffusion barrier layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3-δ cathode and Y0.16Zr0.84O2 electrolyte for solid oxide fuel cells: Effect of barrier layer sintering temperature on microstructure[J]. ACS Appl Energy Mater, 2018, 1(12): 6790-6800.

    [12] [12] CHOI H J, NA Y H, SEO D W, et al. Densification of gadolinia-doped ceria diffusion barriers for SOECs and IT-SOFCs by a sol-gel process[J]. Ceram Int, 2016, 42(1): 545-550.

    [13] [13] WANG G, ZHANG Y, HAN M. Densification of Ce0.9Gd0.1O2-δ interlayer to improve the stability of La0.6Sr0.4Co0.2Fe0.8O3-δ/ Ce0.9Gd0.1O2-δ interface and SOFC[J]. J Electroanal Chem, 2020, 857(10): 113591.

    [14] [14] LYU Q, ZHU T, QU H, et al. Lower down both ohmic and cathode polarization resistances of solid oxide fuel cell via hydrothermal modified gadolinia doped ceria barrier layer[J]. J Eur Ceram Soc, 2021, 41(12): 5931-5938.

    [15] [15] MYUNG D, HONG J, YOON K, et al. The effect of an ultra-thin zirconia blocking layer on the performance of a 1-μm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell[J]. J Power Sources, 2012, 206: 91-96.

    [16] [16] FONSECA F C, UHLENBRUCK S, NEDLC R, et al. Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells[J]. J Power Sources, 2010, 195(6): 1599-1604.

    [17] [17] CODDET P, VULLIET J, RICHARD C, et al. Characteristics and properties of a magnetron sputtered gadolinia-doped ceria barrier layer for solid oxide electrochemical cells[J]. Surf Coating Technol, 2018, 339: 57-64.

    [18] [18] SZYMCZEWSKA D, CHRZAN A, KARCZEWSKI J, et al. Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells[J]. Surf Coating Technol, 2017, 313: 168-176.

    [19] [19] WAN T, SACCOCCIO M, CHEN C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRT tools[J]. Electrochim Acta, 2015, 184: 483-499.

    [20] [20] LYU Z, LIU S, WANG Y, et al. Quantifying the performance evolution of solid oxide fuel cells during initial aging process[J]. J Power Sources, 2021, 510: 230432.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Haoyu, LYU Qiuqiu, CHENG Liya, WU Shenglong, ZHU Tenglong, ZHONG Qin. In-situ Hydrothermal Growth of Dense Ceria Based Barrier Layer for Solid Oxide Fuel Cells[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1000

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 12, 2022

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email: Haoyu ZHAO (zhaohaoyu@njust.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics