High Power Laser Science and Engineering, Volume. 7, Issue 2, 02000e32(2019)

High-repetition-rate, high-peak-power 1450 nm laser source based on optical parametric chirped pulse amplification

Pengfei Wang1,2, Beijie Shao1,2, Hongpeng Su1,2, Xinlin Lv1,2, Yanyan Li1, Yujie Peng1, and Yuxin Leng1、†
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(5)
    Schematic of the OPCPA setup. DL, delay line; TFP, thin film polarizer at 1064 nm; DM, dichroic mirror; BS, beam splitter; HWP, half-wave plate; WLC, white-light continuum; Sa, sapphire; RM, roof mirror; IR, image relay; OAP, off-axis parabolic mirror; VDF, variable density filter; T, telescope; PC, computer.
    Spectrum evolution through the OPCPA system. Insert, near-field beam profile after the second KTA crystal, as measured by a pyroelectric thermal camera (PyroCAM) with a spatial resolution of $80~\unicode[STIX]{x03BC}\text{m}$.
    Energy fluctuation of compressed pulses at 1450 nm.
    Temporal characterization of the compressed pulse. (a) Measured and (b) retrieved SHG-FROG traces; (c) reconstructed pulse envelope (blue), which is 60 fs (FWHM), phase (green) and its TL pulse (red); (d) reconstructed spectrum (blue), phase (green) and measured spectrum (red) obtained by a near-infrared spectrometer (NIR-Quest from Ocean Optics).
    (a) Amplified signal energy as a function of pump energy (seed energy fixed) of the first (insert) and the second OPA stages. (Black) Seed energy fixed at $30~\unicode[STIX]{x03BC}\text{J}$. (Red) Seed energy fixed at $55~\unicode[STIX]{x03BC}\text{J}$. (b) Amplified signal (black dots) and idler (red dots) energies as functions of pump energy in the second OPA stage (the energy of the first amplified signal is fixed at 4.9 mJ).
    Tools

    Get Citation

    Copy Citation Text

    Pengfei Wang, Beijie Shao, Hongpeng Su, Xinlin Lv, Yanyan Li, Yujie Peng, Yuxin Leng. High-repetition-rate, high-peak-power 1450 nm laser source based on optical parametric chirped pulse amplification[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e32

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: HIGH ENERGY DENSITY PHYSICS AND HIGH POWER LASERS

    Received: Sep. 20, 2018

    Accepted: Apr. 8, 2019

    Published Online: May. 29, 2019

    The Author Email: Yuxin Leng (lengyuxin@mail.siom.sc.cn)

    DOI:10.1017/hpl.2019.19

    Topics