Acta Photonica Sinica, Volume. 50, Issue 8, 0850202(2021)
Research Progress of Generation and Control of Ultrafast and Coherent Electron Sources Based on Optical Fields (Invited)
[1] ECHTERNKAMP K E, FEIST A, SCHAFER S et al. Ramsey-type phase control of free-electron beams[J]. Nature Physics, 12, 1000-1004(2016).
[2] MILLER R J D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action[J]. Science, 343, 1108-1116(2014).
[3] ZEWAIL A H. Four-dimensional electron microscopy[J]. Science, 328, 187-193(2010).
[4] FRIGGE T, HAFKE B, WITTE T et al. Optically excited structural transition in atomic wires on surfaces at the quantum limit[J]. Nature, 544, 207-211(2017).
[5] KASMI L, KREIER D, BRADLER M et al. Femtosecond single-electron pulses generated by two-photon photoemission close to the work function[J]. New Journal of Physics, 17(2015).
[6] BORMANN R, STRAUCH S, SCHÄFER S et al. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode[J]. Journal of Applied Physics, 118(2015).
[7] HOFFROGGE J, STEIN J P, KRUEGER M et al. Tip-based source of femtosecond electron pulses at 30 keV[J]. Journal of Applied Physics, 115(2014).
[8] CHATELAIN R P, MORRISON V R, KLARENAAR B L M et al. Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction[J]. Physical Review Letters, 113(2014).
[9] GLISERIN A, WALBRAN M, KRAUSZ F et al. Sub-phonon-period compression of electron pulses for atomic diffraction[J]. Nature Communications, 6, 8723(2015).
[10] MAXSON J, CESAR D, CALMASINI G et al. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance[J]. Physical Review Letters, 118, 154802(2017).
[11] TVAN OUDHEUSDEN, PASMANS P, GEER S BVAN DER et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction[J]. Physical Review Letters, 105, 264801(2010).
[12] KEALHOFER C, SCHNEIDER W, EHBERGER D et al. All-optical control and metrology of electron pulses[J]. Science, 352, 429-433(2016).
[13] SEARS C M S, COLBY E, ISCHEBECK R et al. Production and characterization of attosecond electron bunch trains[J]. Physical Review Special Topics-Accelerators and Beams, 11(2008).
[14] KOZAK M, ECKSTEIN T, SCHONENBERGER N et al. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum[J]. Nature Physics, 14, 121-125(2018).
[15] BAUM P, ZEWAIL A H. Attosecond electron pulses for 4D diffraction and microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 18409-18414(2007).
[16] MORIMOTO Y, BAUM P. Diffraction and microscopy with attosecond electron pulse trains[J]. Nature Physics, 14, 252-256(2018).
[17] KOZAK M, MCNEUR J, LEEDLE K J et al. Optical gating and streaking of free electrons with sub-optical cycle precision[J]. Nature Communications, 8, 14342(2017).
[18] PRIEBE K E, RATHJE C, YALUNIN S V et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy[J]. Nature Photonics, 11, 793-797(2017).
[19] PLETTNER T, BYER R L, COLBY E et al. Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum[J]. Physical Review Letters, 95, 134801(2005).
[20] COWAN B M. Two-dimensional photonic crystal accelerator structures[J]. Physical Review Special Topics-Accelerators and Beams, 6, 101301(2003).
[21] SCHäCHTER L, BYER R L, SIEMANN R H. Wake field in dielectric acceleration structures[J]. Physical Review E, 68(2003).
[22] PERALTA E A, SOONG K, ENGLAND R J et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure[J]. Nature, 503, 91-94(2013).
[23] MICHALIK A M, SIPE J E. Evolution of non-gaussian electron bunches in ultrafast electron diffraction experiments: comparison to analytic model[J]. Journal of Applied Physics, 105(2009).
[24] OUDHEUSDEN T V, JONG E F D, GEER S B V D et al. Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range[J]. Journal of Applied Physics, 102(2007).
[25] WILLIAMSON J C, CAO J, IHEE H et al. Clocking transient chemical changes by ultrafast electron diffraction[J]. Nature, 386, 159-162(1997).
[26] IHEE H, LOBASTOV V A, GOMEZ U M et al. Direct imaging of transient molecular structures with ultrafast diffraction[J]. Science, 291, 458-462(2001).
[27] CAO J, HAO Z, PARK H et al. Femtosecond electron diffraction for direct measurement of ultrafast atomic motions[J]. Applied Physics Letters, 83, 1044-1046(2003).
[28] SIWICK B J, DWYER J R, JORDAN R E et al. An atomic-level view of melting using femtosecond electron diffraction[J]. Science, 302, 1382-1385(2003).
[29] WALDECKER L, BERTONI R, ERNSTORFER R. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit[J]. Journal of Applied Physics, 117(2015).
[30] CARBAJO S, NANNI E A, WONG L J et al. Direct longitudinal laser acceleration of electrons in free space[J]. Physical Review Accelerators and Beams, 19(2016).
[31] ZHU P, ZHU Y, HIDAKA Y et al. Femtosecond time-resolved Mev electron diffraction[J]. New Journal of Physics, 17(2015).
[32] ZHU P F, FU F C, LIU S G et al. Time-resolved visualization of laser-induced heating of gold with mev ultrafast electron diffraction[J]. Chinese Physics Letters, 31, 116101(2014).
[33] WEATHERSBY S P, BROWN G, CENTURION M et al. Mega-electron-volt ultrafast electron diffraction at slac national accelerator laboratory[J]. Review of Scientific Instruments, 86(2015).
[34] LI R, HUANG W, DU Y et al. Note: Single-shot continuously time-resolved MeV ultrafast electron diffraction[J]. Review of Scientific Instruments, 81(2010).
[35] YANG J, KAN K, NARUSE N et al. 100-femtosecond MeV electron source for ultrafast electron diffraction[J]. Radiation Physics and Chemistry, 78, 1106-1111(2009).
[36] HASTINGS J B, RUDAKOV F M, DOWELL D H et al. Ultrafast time-resolved electron diffraction with megavolt electron beams[J]. Applied Physics Letters, 89, 184109(2006).
[37] FILL E, VEISZ L, APOLONSKI A et al. Sub-fs electron pulses for ultrafast electron diffraction[J]. New Journal of Physics, 8, 272(2006).
[38] WANG X J, XIANG D, KIM T K et al. Potential of femtosecond electron diffraction using near-relativistic electrons from a photocathode RF electron gun[J]. Journal of the Korean Physical Society, 48, 390-396(2006).
[39] LAHME S, KEALHOFER C, KRAUSZ F et al. Femtosecond single-electron diffraction[J]. Structural Dynamics, 1(2014).
[40] AIDELSBURGER M, KIRCHNER F O, KRAUSZ F et al. Single-electron pulses for ultrafast diffraction[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 19714-19719(2010).
[41] WANG C, KANG Y. Double-mode electrostatic dispersing prism for electron pulse time-domain compression[J]. Optik, 125, 6352-6356(2014).
[42] GLISERIN A, APOLONSKI A, KRAUSZ F et al. Compression of single-electron pulses with a microwave cavity[J]. New Journal of Physics, 14(2012).
[43] GAO M, JEAN-RUEL H, COONEY R R et al. Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering[J]. Optics Express, 20, 12048-12058(2012).
[44] CHATELAIN R P, MORRISON V R, GODBOUT C et al. Ultrafast electron diffraction with radio-frequency compressed electron pulses[J]. Applied Physics Letters, 101(2012).
[45] TOKITA S, HASHIDA M, INOUE S et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse[J]. Physical Review Letters, 95, 111911(2009).
[46] BAUM P, ZEWAIL A H. 4D attosecond imaging with free electrons: diffraction methods and potential applications[J]. Chemical Physics, 366, 2-8(2009).
[47] BAUM P, ZEWAIL A. Femtosecond diffraction with chirped electron pulses[J]. Chemical Physics Letters, 462, 14-17(2008).
[48] KIRCHNER F O, GLISERIN A, KRAUSZ F et al. Laser streaking of free electrons at 25 keV[J]. Nature Photonics, 8, 52-57(2014).
[49] YANG J, GUEHR M, SHEN X et al. Diffractive imaging of coherent nuclear motion in isolated molecules[J]. Physical Review Letters, 117, 153002(2016).
[50] MORRISON V R, CHATELAIN R P, TIWARI K L et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction[J]. Science, 346, 445-448(2014).
[51] GAO M, LU C, JEAN-RUEL H et al. Mapping molecular motions leading to charge delocalization with ultrabright electrons[J]. Nature, 496, 343-346(2013).
[52] ERNSTORFER R, HARB M, HEBEISEN C T et al. The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold[J]. Science, 323, 1033-1037(2009).
[53] HASSAN M T, BASKIN J S, LIAO B et al. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics[J]. Nature Photonics, 11, 425-430(2017).
[54] HASSAN M T, MOULET A et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature, 530, 66-70(2016).
[55] SHAO H C, STARACE A F. Detecting electron motion in atoms and molecules[J]. Physical Review Letters, 105, 263201(2010).
[56] YAKOVLEV V S, STOCKMAN M I, KRAUSZ F et al. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter[J]. Scientific Reports, 5, 14581(2015).
[57] VANACORE G M, FITZPATRICK A W P, ZEWAIL A H. Four-dimensional electron microscopy: ultrafast imaging, diffraction and spectroscopy in materials science and biology[J]. Nano Today, 11, 228-249(2016).
[58] CHASE T, TRIGO M, REID A H et al. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films[J]. Applied Physics Letters, 108(2016).
[59] FITZPATRICK A W P, VANACORE G M, ZEWAIL A H. Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 3380-3385(2015).
[60] ZEWAIL A H. 4D visualization of matter:Recent collected works of Ahmed H Zewail, Nobel Laureate[C](2014).
[61] SCIAINI G, MILLER R J D. Femtosecond electron diffraction: Heralding the era of atomically resolved dynamics[J]. Reports on Progress in Physics, 74(2011).
[62] MILLER R J D, ERNSTORFER R, HARB M et al. 'Making the molecular movie': First frames[J]. Acta Crystallographica a-Foundation and Advances, 66, 137-156(2010).
[63] ZEWAIL A H, THOMAS J M[M]. 4D ultrafast electron imaging: developments and applications, 179-273(2010).
[64] ZEWAIL A H. 4D ultrafast electron diffraction, crystallography, and microscopy[J]. Annual Review of Physical Chemistry, 57, 65-103(2006).
[65] REED B W. Femtosecond electron pulse propagation for ultrafast electron diffraction[J]. Journal of Applied Physics, 100(2006).
[66] SIWICK B J, DWYER J R, JORDAN R E et al. Femtosecond electron diffraction studies of strongly driven structural phase transitions[J]. Chemical Physics, 299, 285-305(2004).
[67] HEBEISEN C T, SCIAINI G, HARB M et al. Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses[J]. Optics Express, 16, 3334-3341(2008).
[68] EICHBERGER M, SCHAEFER H, KRUMOVA M et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves[J]. Nature, 468, 799-802(2010).
[69] BAUM P, YANG D S, ZEWAIL A H. 4D visualization of transitional structures in phase transformations by electron diffraction[J]. Science, 318, 788-792(2007).
[70] PARK H, WANG X, NIE S et al. Direct and real-time probing of both coherent and thermal lattice motions[J]. Solid State Communications, 136, 559-563(2005).
[71] MUSUMECI P, MOODY J T, SCOBY C M et al. Laser-induced melting of a single crystal gold sample by time-resolved ultrafast relativistic electron diffraction[J]. Applied Physics Letters, 97(2010).
[72] FU F, LIU S, ZHU P et al. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun[J]. Review of Scientific Instruments, 85(2014).
[73] GIRET Y, NARUSE N, DARASZEWICZ S L et al. Determination of transient atomic structure of laser-excited materials from time-resolved diffraction data[J]. Applied Physics Letters, 103, 253107(2013).
[74] MILLER R J D. Mapping atomic motions with ultrabright electrons: the chemists' gedanken experiment enters the lab frame[J]. Annual Review of Physical Chemistry, 65, 583-604(2014).
[75] SCHäCHTER L, KIMURA W D, BEN-ZVI I. Ultrashort microbunch electron source[J]. AIP Conference Proceedings, 1777(2016).
[76] YANAGISAWA H, HAFNER C, DONA P et al. Laser-induced field emission from a tungsten tip: Optical control of emission sites and the emission process[J]. Physical Review B, 81, 115429(2010).
[77] HOMMELHOFF P, SORTAIS Y, AGHAJANI-TALESH A et al. Field emission tip as a nanometer source of free electron femtosecond pulses[J]. Physical Review Letters, 96(2006).
[78] NEIDERT R E, PHILLIPS P M, SMITH S T et al. Field emission triodes[J]. IEEE Transactions on Electron Devices, 38, 661-665(1991).
[79] BARWICK B, PARK H S, KWON O H et al. 4D imaging of transient structures and morphologies in ultrafast electron microscopy[J]. Science, 322, 1227-1231(2008).
[80] HOMMELHOFF P, KEALHOFER C, KASEVICH M A. Reaching the resolved tunnel regime for a femtosecond oscillator driven field emission electron source[J]. Laser Physics, 19, 736-738(2009).
[81] ROPERS C, SOLLI D R, SCHULZ C P et al. Localized multiphoton emission of femtosecond electron pulses from metal nanotips[J]. Physical Review Letters, 98(2007).
[82] ROPERS C, ELSAESSER T, CERULLO G et al. Ultrafast optical excitations of metallic nanostructures: From light confinement to a novel electron source[J]. New Journal of Physics, 9, 397(2007).
[83] BARWICK B, CORDER C, STROHABER J et al. Laser-induced ultrafast electron emission from a field emission tip[J]. New Journal of Physics, 9, 142(2007).
[84] HOMMELHOFF P, KEALHOFER C, KASEVICH M A. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses[J]. Physical Review Letters, 97, 247402(2006).
[85] BARWICK B, FLANNIGAN D J, ZEWAIL A H. Photon-induced near-field electron microscopy[J]. Nature, 462, 902-906(2009).
[86] CARBONE F, KWON O H, ZEWAIL A H. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy[J]. Science, 325, 181-184(2009).
[87] LOBASTOV V A, SRINIVASAN R, ZEWAIL A H. Four-dimensional ultrafast electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 7069-7073(2005).
[88] AESCHLIMANN M, HULL E, CAO J et al. A picosecond electron gun for surface analysis[J]. Review of Scientific Instruments, 66, 1000-1009(1995).
[89] BANFI F, GIANNETTI C, FERRINI G et al. Experimental evidence of above-threshold photoemission in solids[J]. Physical Review Letters, 94(2005).
[90] ZEITLER B, FLOETTMANN K, GRüNER F. Linearization of the longitudinal phase space without higher harmonic field[J]. Physical Review Special Topics-Accelerators and Beams, 18, 120102(2015).
[91] BUCK A, NICOLAI M, SCHMID K et al. Real-time observation of laser-driven electron acceleration[J]. Nature Physics, 7, 543(2011).
[92] LUNDH O, RECHATIN C et al. Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator[J]. Nature Physics, 7, 219-222(2011).
[93] ESAREY E, SCHROEDER C B, LEEMANS W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).
[94] ENGLAND R J, NOBLE R J, BANE K et al. Dielectric laser accelerators[J]. Reviews of Modern Physics, 86, 1337-1389(2014).
[95] CHEN Min, LIU Feng, LI Boyuan等. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 32(2020).
[96] PERRY M D, MOUROU G. Terawatt to petawatt subpicosecond lasers[J]. Science, 264, 917-924(1994).
[97] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).
[98] MANGLES S P, MURPHY C D, NAJMUDIN Z et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 431, 535-538(2004).
[99] GEDDES C G R, TOTH C, JVAN TILBORG et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 431, 538-541(2004).
[100] FAURE J, GLINEC Y, PUKHOV A et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).
[101] GONSALVES A J, NAKAMURA K, DANIELS J et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 122(2019).
[102] LEEMANS W P, GONSALVES A J, MAO H S et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 113, 245002(2014).
[103] KNEIP S, NAGEL S R, MARTINS S F et al. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse[J]. Physical Review Letters, 103(2009).
[104] HAFZ N A M, JEONG T M, CHOI I W et al. Stable generation of GeV-class electron beams from self-guided laser-plasma channels[J]. Nature Photonics, 2, 571-577(2008).
[105] LEEMANS W P, NAGLER B, GONSALVES A J et al. GeV electron beams from a centimetre-scale accelerator[J]. Nature Physics, 2, 696-699(2006).
[106] GUéNOT D, GUSTAS D, VERNIER A et al. Relativistic electron beams driven by kHz single-cycle light pulses[J]. Nature Photonics, 11, 293-296(2017).
[107] SCHMID K. Few-cycle laser-driven electron acceleration[J]. Physical Review Letters, 102, 124801(2009).
[108] TOOLEY M P, ERSFELD B, YOFFE S R et al. Towards attosecond high-energy electron bunches: controlling self-injection in laser-wakefield accelerators through plasma-density modulation[J]. Physical Review Letters, 119(2017).
[109] HORN V, PETRíLKA V, KRUS M. Short electron bunches from injection by perpendicularly crossing pulses[J]. Plasma Physics and Controlled Fusion, 61(2019).
[110] ZHAO Q, WENG S M, CHEN M et al. Sub-femtosecond electron bunches in laser wakefield acceleration via injection suppression with a magnetic field[J]. Plasma Physics and Controlled Fusion, 61(2019).
[111] SCHUMAKER W, NAKANII N, MCGUFFEY C et al. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions[J]. Physical Review Letters, 110(2013).
[112] ZHANG C J, HUA J F, WAN Y et al. Femtosecond probing of plasma wakefields and observation of the plasma wake reversal using a relativistic electron bunch[J]. Physical Review Letters, 119(2017).
[113] ROUSSE A. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 93, 135005(2004).
[114] ESAREY E, SHADWICK B A, CATRAVAS P et al. Synchrotron radiation from electron beams in plasma-focusing channels[J]. Physical Review E, 65(2002).
[115] SHAH R C, ALBERT F, PHUOC KTA et al. Coherence-based transverse measurement of synchrotron X-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons[J]. Physical Review E, 74(2006).
[116] KNEIP S, MCGUFFEY C, MARTINS J L et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 6, 980-983(2010).
[117] KNEIP S, MCGUFFEY C, DOLLAR F et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator[J]. Applied Physics Letters, 99(2011).
[118] FOURMAUX S, CORDE S, PHUOC K T et al. Single shot phase contrast imaging using laser-produced betatron X-ray beams[J]. Optics Letters, 36, 2426-2428(2011).
[119] COLE J M, SYMES D R, LOPES N C et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6335-6340(2018).
[120] WENZ J, SCHLEEDE S, KHRENNIKOV K et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source[J]. Nature Communications, 6, 7568(2015).
[121] MAHIEU B, JOURDAIN N, PHUOC KTA et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source[J]. Nature Communications, 9, 3276(2018).
[122] KODAMA R, SENTOKU Y, CHEN Z L et al. Plasma devices to guide and collimate a high density of MeV electrons[J]. Nature, 432, 1005-1008(2004).
[123] NAKAJIMA H, TOKITA S, INOUE S et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target[J]. Physical Review Letters, 110, 155001(2013).
[124] WANG W, LIU J, CAI Y et al. Angular and energy distribution of fast electrons emitted from a solid surface irradiated by femtosecond laser pulses in various conditions[J]. Physics of Plasmas, 17(2010).
[125] HU G Y, LEI A L, WANG W T et al. Collimated hot electron jets generated from subwavelength grating targets irradiated by intense short-pulse laser[J]. Physics of Plasmas, 17(2010).
[126] BRANDL F, HIDDING B, OSTERHOLZ J et al. Directed acceleration of electrons from a solid surface by sub-10-fs laser pulses[J]. Physical Review Letters, 102, 195001(2009).
[127] LI Y T, YUAN X H, XU M H et al. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 96, 165003(2006).
[128] GULDE M, SCHWEDA S, STORECK G et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics[J]. Science, 345, 200-204(2014).
[129] QUINONEZ E, HANDALI J, BARWICK B. Femtosecond photoelectron point projection microscope[J]. Review of Scientific Instruments, 84, 103710(2013).
[130] KEALHOFER C, FOREMAN S M, GERLICH S et al. Ultrafast laser-triggered emission from hafnium carbide tips[J]. Physical Review B, 86(2012).
[131] HERINK G, SOLLI D R, GULDE M et al. Field-driven photoemission from nanostructures quenches the quiver motion[J]. Nature, 483, 190-193(2012).
[132] KRüGER M, SCHENK M, HOMMELHOFF P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 475, 78-81(2011).
[133] BORMANN R, GULDE M, WEISMANN A et al. Tip-enhanced strong-field photoemission[J]. Physical Review Letters, 105, 147601(2010).
[134] SCHENK M, KRüGER M, HOMMELHOFF P. Strong-field above-threshold photoemission from sharp metal tips[J]. Physical Review Letters, 105, 257601(2010).
[135] YANAGISAWA H, HAFNER C, DONá P et al. Optical control of field-emission sites by femtosecond laser pulses[J]. Physical Review Letters, 103, 257603(2009).
[136] EHBERGER D, HAMMER J, EISELE M et al. Highly coherent electron beam from a laser-triggered tungsten needle tip[J]. Physical Review Letters, 114, 227601(2015).
[137] FEIST A, BACH N, RUBIANO D A SILVA N et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam[J]. Ultramicroscopy, 176, 63-73(2017).
[138] YANG D S, MOHAMMED O F, ZEWAIL A H. Scanning ultrafast electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 14993-14998(2010).
[139] COOK B, BRONSGEEST M, HAGEN K et al. Improving the energy spread and brightness of thermal-field (Schottky) emitters with PHAST-photo assisted Schottky tip[J]. Ultramicroscopy, 109, 403-412(2009).
[140] FURSEY G. Field emission in vacuum microelectronics[M]. Microdevices(2005).
[141] ICHIMURA T, SHIMIZU R et al. Quantitative evaluation of spatial coherence of the electron beam from low temperature field emitters[J]. Physical Review Letters, 92, 246103(2004).
[142] NAGAOKA K, YAMASHITA T, UCHIYAMA S et al. Monochromatic electron emission from the macroscopic quantum state of a superconductor[J]. Nature, 396, 557-559(1998).
[143] MCCULLOCH A J, SHELUDKO D V, JUNKER M et al. High-coherence picosecond electron bunches from cold atoms[J]. Nature Communications, 4, 1692(2013).
[144] ENGELEN W J, HEIJDEN M AVAN DER, BAKKER D J et al. High-coherence electron bunches produced by femtosecond photoionization[J]. Nature Communications, 4, 1693(2013).
[145] GEER S BVAN DER, DE LOOS M J, VREDENBREGT E J D et al. Ultracold electron source for single-shot, ultrafast electron diffraction[J]. Microscopy and Microanalysis, 15, 282-289(2009).
[146] LUITEN O J, CLAESSENS B J, GEER S BVAN DER et al. Ultracold electron sources[J]. International Journal of Modern Physics A, 22, 3882-3897(2007).
[147] CLAESSENS B J, GEER S BVAN DER, TABAN G et al. Ultracold electron source[J]. Physical Review Letters, 95, 164801(2005).
[148] METCALFHAROLD J., STRATEN P V D. Laser cooling and trapping[M]. Graduate texts in contemporary physics(1999).
[149] ENGELEN W J, SMAKMAN E P, BAKKER D J et al. Effective temperature of an ultracold electron source based on near-threshold photoionization[J]. Ultramicroscopy, 136, 73-80(2014).
[150] TABAN G, REIJNDERS M P, FLESKENS B et al. Ultracold electron source for single-shot diffraction studies[J]. EPL, 91, 46004(2010).
[151] SALIBA S D, PUTKUNZ C T, SHELUDKO D V et al. Spatial coherence of electron bunches extracted from an arbitrarily shaped cold atom electron source[J]. Optics Express, 20, 3967-3974(2012).
[152] MOURIK M W V, ENGELEN W J, VREDENBREGT E J D et al. Ultrafast electron diffraction using an ultracold source[J]. Structural Dynamics, 1(2014).
[153] SPEIRS R W, PUTKUNZ C T, MCCULLOCH A J et al. Single-shot electron diffraction using a cold atom electron source[J]. Journal of Physics B-Atomic Molecular and Optical Physics, 48, 214002(2015).
[154] WIMMER L, HERINK G, SOLLI D R et al. Terahertz control of nanotip photoemission[J]. Nature Physics, 10, 432-436(2014).
[155] FEIST A, ECHTERNKAMP K E, SCHAUSS J et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope[J]. Nature, 521, 200-203(2015).
[156] FLANNIGAN D J, ZEWAIL A H. 4D electron microscopy: Principles and applications[J]. Accounts of Chemical Research, 45, 1828-1839(2012).
[157] MORIMOTO Y, BAUM P. Attosecond control of electron beams at dielectric and absorbing membranes[J]. Physical Review A, 97(2018).
[158] HILBERT S A, UITERWAAL C, BARWICK B et al. Temporal lenses for attosecond and femtosecond electron pulses[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 10558-10563(2009).
[159] FERRARIO M, ALESINI D, BACCI A et al. Experimental demonstration of emittance compensation with velocity bunching[J]. Physical Review Letters, 104(2010).
[160] ANDERSON S G, MUSUMECI P, ROSENZWEIG J B et al. Velocity bunching of high-brightness electron beams[J]. Physical Review Special Topics-Accelerators and Beams, 8(2005).
[161] LU X H, TANG C X, LI R K et al. Generation and measurement of velocity bunched ultrashort bunch of pC charge[J]. Physical Review Special Topics-Accelerators and Beams, 18(2015).
[162] GAHLMANN A, PARK S T, ZEWAIL A H. Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions[J]. Physical Chemistry Chemical Physics, 10, 2894-2909(2008).
[163] SIWICK B J, DWYER J R, JORDAN R E et al. Ultrafast electron optics: propagation dynamics of femtosecond electron packets[J]. Journal of Applied Physics, 92, 1643-1648(2002).
[164] SCOBY C M, LI R K, THRELKELD E et al. Single-shot 35 fs temporal resolution electron shadowgraphy[J]. Applied Physics Letters, 102(2013).
[165] KASSIER G H, ERASMUS N, HAUPT K et al. Photo-triggered pulsed cavity compressor for bright electron bunches in ultrafast electron diffraction[J]. Applied Physics B-Lasers and Optics, 109, 249-257(2012).
[166] KASSIER G H, HAUPT K, ERASMUS N et al. Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction[J]. Journal of Applied Physics, 105, 113111(2009).
[167] MICHALIK A M, SHERMAN E Y, SIPE J E. Theory of ultrafast electron diffraction: the role of the electron bunch properties[J]. Journal of Applied Physics, 104(2008).
[168] ROSENZWEIG J B[M]. Fundamentals of beam physics(2003).
[169] LUITEN O J, GEER S BVAN DER, DE LOOS M J et al. How to realize uniform three-dimensional ellipsoidal electron bunches[J]. Physical Review Letters, 93(2004).
[170] ZANDI O, WILKIN K J, XIONG Y et al. High current table-top setup for femtosecond gas electron diffraction[J]. Structural Dynamics, 4(2017).
[171] WALBRAN M, GLISERIN A, JUNG K et al. 5-femtosecond laser-electron synchronization for pump-probe crystallography and diffraction[J]. Physical Review Applied, 4(2015).
[172] SCHULZ S, GRGURAŠ I, BEHRENS C et al. Femtosecond all-optical synchronization of an X-ray free-electron laser[J]. Nature Communications, 6, 5938(2015).
[173] BRUSSAARD G J H, LASSISE A, PASMANS P L E M et al. Direct measurement of synchronization between femtosecond laser pulses and a 3 GHz radio frequency electric field inside a resonant cavity[J]. Applied Physics Letters, 103, 141105(2013).
[174] ZHANG D, FALLAHI A, HEMMER M et al. Segmented terahertz electron accelerator and manipulator (STEAM)[J]. Nature Photonics, 12, 336-342(2018).
[175] NANNI E A, HUANG W R, HONG K H et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 6, 8486(2015).
[176] EHBERGER D, RYABOV A, BAUM P. Tilted electron pulses[J]. Physical Review Letters, 121(2018).
[177] LI R K, HOFFMANN M C, NANNI E A et al. Terahertz-based subfemtosecond metrology of relativistic electron beams[J]. Physical Review Accelerators and Beams, 22(2019).
[178] CURRY E, FABBRI S, MAXSON J et al. Meter-scale terahertz-driven acceleration of a relativistic beam[J]. Physical Review Letters, 120(2018).
[179] ZHAO L, WANG Z, LU C et al. Terahertz streaking of few-femtosecond relativistic electron beams[J]. Physical Review X, 8(2018).
[180] OUDHEUSDEN T V, PASMANS P L E M, GEER S B V D et al. Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction[J]. Physical Review Letters, 105, 264801(2010).
[181] EHBERGER D, MOHLER K J, VASILEIADIS T et al. Terahertz compression of electron pulses at a planar mirror membrane[J]. Physical Review Applied, 11(2019).
[182] OTTO M R, COTRET L P R D, STERN M J et al. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization[J]. Structural Dynamics, 4(2017).
[183] BREUER J, HOMMELHOFF P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure[J]. Physical Review Letters, 111, 134803(2013).
[184] MORIMOTO Y, BAUM P. Single-cycle optical control of beam electrons[J]. Physical Review Letters, 125, 193202(2020).
[185] KOZAK M, SCHOENENBERGER N, HOMMELHOFF P. Ponderomotive generation and detection of attosecond free-electron pulse trains[J]. Physical Review Letters, 120, 103203(2018).
[186] BANERJEE S, SEPKE S, SHAH R et al. Optical deflection and temporal characterization of an ultrafast laser-produced electron beam[J]. Physical Review Letters, 95(2005).
[187] LIU Y, ZHANG J, WU H et al. Ponderomotive scattering of electrons and its application to measure the pulse duration of ultrafast electron beams[J]. Journal of Applied Physics, 103(2008).
[188] HEBEISEN C T, ERNSTORFER R, HARB M et al. Femtosecond electron pulse characterization using laser ponderomotive scattering[J]. Optics Letters, 31, 3517-3519(2006).
[189] FABIAŃSKA J, KASSIER G, FEURER T. Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution[J]. Scientific Reports, 4, 5645(2014).
[190] BAUM P, ZEWAIL A H. Breaking resolution limits in ultrafast electron diffraction and microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 16105-16110(2006).
[191] ZHOU C, BAI Y, SONG L et al. Direct mapping of attosecond electron dynamics[J]. Nature Photonics, 15, 216-221(2021).
[192] PARK S T, LIN M, ZEWAIL A H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental[J]. New Journal of Physics, 12, 123028(2010).
[193] YURTSEVER A, VEEN R MVAN DER, ZEWAIL A H. Subparticle ultrafast spectrum imaging in 4D electron microscopy[J]. Science, 335, 59-64(2012).
[194] PIAZZA L, LUMMEN T T A, QUINONEZ E et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field[J]. Nature Communications, 6, 6407(2015).
[195] FU X, BARANTANI F, GARGIULO S et al. Nanoscale-femtosecond dielectric response of mott insulators captured by two-color near-field ultrafast electron microscopy[J]. Nature Communications, 11, 5770-5770(2020).
[196] PARK S T, ZEWAIL A H. Chirped imaging pulses in four-dimensional electron microscopy: femtosecond pulsed hole burning[J]. New Journal of Physics, 14(2012).
[197] PLEMMONS D A, STAE PARK, ZEWAIL A H et al. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy[J]. Ultramicroscopy, 146, 97-102(2014).
[198] STORECK G, HORSTMANN J G, DIEKMANN T et al. Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction[J]. Structural Dynamics, 7(2020).
[199] HORSTMANN J G, BöCKMANN H et al. Coherent control of a surface structural phase transition[J]. Nature, 583, 232-236(2020).
[200] QI F, MA Z, ZHAO L et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor[J]. Physical Review Letters, 124, 134803(2020).
[201] YANG J, ZHU X, PF. NUNES J et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction[J]. Science, 368, 885-889(2020).
[202] KOGAR A, ZONG A, DOLGIREV P E et al. Light-induced charge density wave in LaTe3[J]. Nature Physics, 16, 159-163(2020).
[203] NYBY C M, PEMMARAJU C D et al. An ultrafast symmetry switch in a weyl semimetal[J]. Nature, 565, 61-66(2019).
[205] CARBONE F, YANG D S, GIANNINI E et al. Direct role of structural dynamics in electron-lattice coupling of superconducting cuprates[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 20161-20166(2008).
[206] RUAN C Y, LOBASTOV V A, VIGLIOTTI F et al. Ultrafast electron crystallography of interfacial water[J]. Science, 304, 80-84(2004).
[207] CHEN S, SEIDEL M T, ZEWAIL A H. Atomic-scale dynamical structures of fatty acid bilayers observed by ultrafast electron crystallography[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 8854-8859(2005).
[208] DE COTRET L P R, POHLS J H, STERN M J et al. Time- and momentum-resolved phonon population dynamics with ultrafast electron diffuse scattering[J]. Physical Review B, 100, 214115(2019).
[209] PARK H S, BASKIN J S et al. Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy[J]. Nano Letters, 7, 2545-2551(2007).
[210] PARK H S, BASKIN J S, BARWICK B et al. 4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics[J]. Ultramicroscopy, 110, 7-19(2009).
[211] YURTSEVER A, ZEWAIL A H. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy[J]. Science, 326, 708-712(2009).
[212] KWON O H, BARWICK B, PARK H S et al. 4D visualization of embryonic, structural crystallization by single-pulse microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 8519-8524(2008).
[213] KWON O H, ZEWAIL A H. 4D electron tomography[J]. Science, 328, 1668-1673(2010).
[214] CREMONS D R, PLEMMONS D A, FLANNIGAN D J. Defect-mediated phonon dynamics in TaS2 and WSe2[J]. Structural Dynamics, 4(2017).
[215] ZHANG Y, FLANNIGAN D J. Observation of anisotropic strain-wave dynamics and few-layer dephasing in MoS2 with ultrafast electron microscopy[J]. Nano Letters, 19, 8216-8224(2019).
[216] ZHANG M, CAO G, TIAN H et al. Picosecond view of a martensitic transition and nucleation in the shape memory alloy Mn50Ni40Sn10 by four-dimensional transmission electron microscopy[J]. Physical Review B, 96, 174203(2017).
[217] RYABOV A, BAUM P. Electron microscopy of electromagnetic waveforms[J]. Science, 353, 374-377(2016).
[218] LORENZ U J, ZEWAIL A H. Observing liquid flow in nanotubes by 4D electron microscopy[J]. Science, 344, 1496-1500(2014).
[219] CHEN B, FU X, TANG J et al. Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 12876-12881(2017).
[220] FU X, LIU S, CHEN B et al. Observation and control of unidirectional ballistic dynamics of nanoparticles at a liquid-gas interface by 4D electron microscopy[J]. ACS Nano, 15, 6801-6810(2021).
[221] DANZ T, DOMRÖSE T, ROPERS C. Ultrafast nanoimaging of the order parameter in a structural phase transition[J]. Science, 371, 371-374(2021).
[222] LUMMEN T T A, LAMB R J, BERRUTO G et al. Imaging and controlling plasmonic interference fields at buried interfaces[J]. Nature Communications, 7, 13156(2016).
[223] WANG K, DAHAN R, SHENTCIS M et al. Coherent interaction between free electrons and a photonic cavity[J]. Nature, 582, 50-54(2020).
[224] KFIR O, LOURENÇO-MARTINS H, STORECK G et al. Controlling free electrons with optical whispering-gallery modes[J]. Nature, 582, 46-49(2020).
[225] VANACORE G M, BERRUTO G, MADAN I et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields[J]. Nature Materials, 18, 573-579(2019).
[226] SILVA N RDA, MOELLER M, FEIST A et al. Nanoscale mapping of ultrafast magnetization dynamics with femtosecond lorentz microscopy[J]. Physical Review X, 8(2018).
[227] FU X, POLLARD S D, CHEN B et al. Optical manipulation of magnetic vortices visualized in situ by lorentz electron microscopy[J]. Science Advances, 4(2018).
[228] CAO G, JIANG S, AKERMAN J et al. Femtosecond laser driven precessing magnetic gratings[J]. Nanoscale, 13, 3746-3756(2021).
[229] FITZPATRICK A W P, LORENZ U J, VANACORE G M et al. 4D cryo-electron microscopy of proteins[J]. Journal of the American Chemical Society, 135, 19123-19126(2013).
[230] LORENZ U J, ZEWAIL A H. Biomechanics of DNA structures visualized by 4D electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 2822-2827(2013).
[231] FU X, CHEN B, TANG J et al. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy[J]. Science, 355, 494-498(2017).
[232] FU X, CHEN B, TANG J et al. Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy[J]. Science Advances, 3(2017).
[233] FU X, CHEN B, LI C et al. Direct visualization of photomorphic reaction dynamics of plasmonic nanoparticles in liquid by four-dimensional electron microscopy[J]. Journal of Physical Chemistry Letters, 9, 4045-4052(2018).
[234] JING C, ZHU Y, LIU A et al. Tunable electron beam pulser for picoseconds stroboscopic microscopy in transmission electron microscopes[J]. Ultramicroscopy, 207, 112829(2019).
[235] SCHLIEP K B, KATZ M B et al. Laser-free GHz stroboscopic transmission electron microscope: Components, system integration, and practical considerations for pump-probe measurements[J]. Review of Scientific Instruments, 91(2020).
[236] FU X, WANG E, ZHAO Y et al. Direct visualization of electromagnetic wave dynamics by laser-free ultrafast electron microscopy[J]. Science Advances, 6(2020).
[237] LASSISE A, MUTSAERS P H A, LUITEN O J. Compact, low power radio frequency cavity for femtosecond electron microscopy[J]. Review of Scientific Instruments, 83(2012).
[238] VERHOEVEN W, J F MVAN RENS, KIEFT E R et al. High quality ultrafast transmission electron microscopy using resonant microwave cavities[J]. Ultramicroscopy, 188, 85-89(2018).
[239] MOHAMMED O F, YANG D S et al. 4D scanning ultrafast electron microscopy: visualization of materials surface dynamics[J]. Journal of the American Chemical Society, 133, 7708-7711(2011).
[240] LIAO B, NAJAFI E. Scanning ultrafast electron microscopy: A novel technique to probe photocarrier dynamics with high spatial and temporal resolutions[J]. Materials Today Physics, 2, 46-53(2017).
[241] NAJAFI E, SCARBOROUGH T D, TANG J et al. Four-dimensional imaging of carrier interface dynamics in p-n junctions[J]. Science, 347, 164-167(2015).
[242] LIAO B, ZHAO H, NAJAFI E et al. Spatial-temporal imaging of anisotropic photocarrier dynamics in black phosphorus[J]. Nano Letters, 17, 3675-3680(2017).
[243] ZANI M, SALA V, IRDE G et al. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy[J]. Ultramicroscopy, 187, 93-97(2018).
[244] SUN J, MELNIKOV V A, KHAN J I et al. Real-space imaging of carrier dynamics of materials surfaces by second-generation four-dimensional scanning ultrafast electron microscopy[J]. Journal of Physical Chemistry Letters, 6, 3884-3890(2015).
[245] EL-ZOHRY A M, SHAHEEN B S, BURLAKOV V M et al. Extraordinary carrier diffusion on CdTe surfaces uncovered by 4D electron microscopy[J]. Chem, 5, 706-718(2019).
[246] BOSE R, ADHIKARI A, BURLAKOV V M et al. Imaging localized energy states in silicon-doped InGaN nanowires using 4D electron microscopy[J]. ACS Energy Letters, 3, 476-481(2018).
[247] STECKENBORN A, MUNZEL H, BIMBERG D. Cathodoluminescence lifetime pattern of GaAs-surfaces around dislocations[J]. Journal of Luminescence, 24, 351-354(1981).
[248] HASTENRATH M, KUBALEK E. Time-resolved cathodoluminescence in scanning electron-microscopy[J]. Scanning Electron Microscopy, 1, 157-173(1982).
[249] MYHAJLENKO S, KE W K. Time-resolved cathodoluminescence by delayed coincidence[J]. Journal of Physics E-Scientific Instruments, 17, 200-203(1984).
[250] MERANO M, SONDEREGGER S, CROTTINI A et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence[J]. Nature, 438, 479-482(2005).
[251] FURUSAWA K, ISHIKAWA Y, TASHIRO M et al. Local carrier dynamics around the sub-surface basal-plane stacking faults of GaN studied by spatio-time-resolved cathodoluminescence using a front-excitation-type photoelectron-gun[J]. Applied Physics Letters, 103(2013).
[252] SHAHMOHAMMADI M, JACOPIN G, FU X et al. Exciton hopping probed by picosecond time-resolved cathodoluminescence[J]. Applied Physics Letters, 107, 141101(2015).
[253] FU X, JACOPIN G, SHAHMOHAMMADI M et al. Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires[J]. ACS Nano, 8, 3412-3420(2014).
Get Citation
Copy Citation Text
Ye TIAN, Chuliang ZHOU, Xuewen FU, Shaozheng JI, Yuxin LENG, Ruxin LI. Research Progress of Generation and Control of Ultrafast and Coherent Electron Sources Based on Optical Fields (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850202
Category: Special Issue for Ultrafast Optics
Received: May. 30, 2021
Accepted: Jun. 30, 2021
Published Online: Sep. 1, 2021
The Author Email: Xuewen FU (xwfu@nankai.edu.cn)