Photonics Research, Volume. 10, Issue 8, 1971(2022)

Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator Editors' Pick

Li Liu1,2、†, Ruxue Wang1,2、†, Xuyi Zhao2,3, Wenfu Yu2,3, Yi Jin4,5、*, Qian Gong2,3,6、*, and Aimin Wu1,2,7、*
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 4Centre for Optical and Electromagnetic Research and International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • 5e-mail: jinyi_2008@zju.edu.cn
  • 6e-mail: qgong@mail.sim.ac.cn
  • 7e-mail: wuaimin@mail.sim.ac.cn
  • show less
    References(40)

    [1] L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, H. Avramopoulos. High-precision flip-chip technology for all optical wavelength conversion using SOI photonic circuit. 8th IEEE International Conference on Group IV Photonics, 237-239(2011).

    [2] G. H. Duan, C. Jany, A. L. Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, F. Lelarge. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 20, 158-170(2014).

    [3] J. C. Norman, D. Jung, Y. Wan, E. John. Bowers perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [4] T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, M.-L. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, Z. Zhang. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 6, 430-435(2019).

    [5] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 23, 1901007(2017).

    [6] M. Ren-Min, R. F. Oulton. Applications of nanolasers. Nat. Nanotechnol., 14, 12-22(2019).

    [7] I. Staude, T. Pertsch, Y. S. Kivshar. All-dielectric resonant meta-optics lightens up. ACS Photon., 6, 802-814(2019).

    [8] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [9] V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, J. Schilling. Quantum dot emission driven by Mie resonances in silicon nanostructures. Nano Lett., 17, 6886-6892(2017).

    [10] E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, S. V. Makarov. Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles. ACS Nano, 14, 8149-8156(2020).

    [11] T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Domínguez, C. E. Png, H.-S. Chu, A. I. Kuznetsov. Collective Mie resonances for directional on-chip nanolasers. Nano Lett., 20, 5655-5661(2020).

    [12] V. Rutckaia, F. Heyroth, G. Schmidt, A. Novikov, M. Shaleev, R. S. Savelev, J. Schilling, M. Petrov. Coupling of germanium quantum dots with collective sub-radiant modes of silicon nanopillar arrays. ACS Photon., 8, 209-217(2021).

    [13] H. Sugimoto, M. Fujii. Colloidal Mie resonant silicon nanoparticles. Nanotechnology, 32, 452001(2021).

    [14] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [15] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, A. V. Lavrinenko. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photon., 4, 723-727(2017).

    [16] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, K. Boubacar. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [17] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836-842(2019).

    [18] J.-H. Yang, Z.-T. Huang, D. N. Maksimov, P. S. Pankin, I. V. Timofeev, K.-B. Hong, H. Li, J.-W. Chen, C.-Y. Hsu, Y.-Y. Liu, T.-C. Lu, T.-R. Lin, C.-S. Yang, K.-P. Chen. Low-threshold bound state in the continuum lasers in hybrid lattice resonance metasurfaces. Laser Photon. Rev., 15, 2100118(2021).

    [19] S. Cao, Y. Jin, H. Dong, T. Guo, J. He, S. He. Enhancing single photon emission through quasi-bound states in the continuum of monolithic hexagonal boron nitride metasurface. J. Phys. Mater., 4, 035001(2021).

    [20] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, Y. S. Kivshar. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [21] A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, F. Mikhail. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv. Photon., 1, 016001(2019).

    [22] S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Dominguez, A. I. Kuznetsov. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 13, 1042-1047(2018).

    [23] C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, Q. Song. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [24] V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, A. I. Kuznetsov. Lasing action in single subwavelength particles supporting supercavity modes. ACS Nano, 14, 7338-7346(2020).

    [25] M. Wu, L. Ding, R. P. Sabatini, L. K. Sagar, G. Bappi, R. Paniagua-Domínguez, E. H. Sargent, A. I. Kuznetsov. Bound state in the continuum in nanoantenna-coupled slab waveguide enables low-threshold quantum-dot lasing. Nano Lett., 21, 9754-9760(2021).

    [26] W. Bi, X. Zhang, M. Yan, L. Zhao, T. Ning, Y. Huo. Low-threshold and controllable nanolaser based on quasi-BIC supported by an all-dielectric eccentric nanoring structure. Opt. Express, 29, 12634-12643(2021).

    [27] R. Heilmann, G. Salerno, J. Cuerda, T. K. Hakala, P. Törmä. Quasi-BIC mode lasing in a quadrumer plasmonic lattice. ACS Photon., 9, 224-232(2022).

    [28] H. K. Gandhi, D. Rocco, L. Carletti, C. De Angelis. Gain-loss engineering of bound states in the continuum for enhanced nonlinear response in dielectric nanocavities. Opt. Express, 28, 3009-3016(2020).

    [29] S. D. Krasikov, A. A. Bogdanov, I. V. Iorsh. Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab. Phys. Rev. B, 97, 224309(2018).

    [30] K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, Y. Kivshar. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [31] H. Kroemer. Polar-on-nonpolar epitaxy. J. Cryst. Growth, 81, 193-204(1987).

    [32] M. Liao, S. Chen, J.-S. Park, A. Seeds, H. Liu. III-V quantum-dot lasers monolithically grown on silicon. Semicond. Sci. Technol., 33, 123002(2018).

    [33] Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, K. M. Lau. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt. Lett., 41, 1664-1667(2016).

    [34] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3  μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940-944(2017).

    [35] J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, Y. Arakawa. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express, 26, 11568-11576(2018).

    [36] B. Zhang, W.-Q. Wei, J.-H. Wang, H.-L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, J.-J. Zhang. O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy. AIP Adv., 9, 015331(2019).

    [37] J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard. A path to 300 mm hybrid silicon photonic integrated circuits. Optical Fiber Communication Conference, Th1C.1(2014).

    [38] E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett., 51, 222-2224(1987).

    [39] J. van de Groep, A. Polman. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express, 21, 26285-26302(2013).

    [40] R. Colom, F. Binkowski, F. Betz, Y. Kivshar, S. Burger. Enhanced Purcell factor for nanoantennas supporting interfering resonances. Phys. Rev. Res., 4, 023189(2022).

    Tools

    Get Citation

    Copy Citation Text

    Li Liu, Ruxue Wang, Xuyi Zhao, Wenfu Yu, Yi Jin, Qian Gong, Aimin Wu. Heterogeneously integrated quantum-dot emitters efficiently driven by a quasi-BIC-supporting dielectric nanoresonator[J]. Photonics Research, 2022, 10(8): 1971

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Silicon Photonics

    Received: Apr. 29, 2022

    Accepted: Jun. 27, 2022

    Published Online: Jul. 27, 2022

    The Author Email: Yi Jin (jinyi_2008@zju.edu.cn), Qian Gong (qgong@mail.sim.ac.cn), Aimin Wu (wuaimin@mail.sim.ac.cn)

    DOI:10.1364/PRJ.462474

    Topics