Laser & Optoelectronics Progress, Volume. 50, Issue 8, 80010(2013)

Recent Developments and Key Technology Analysis of High Power Supercontinuum Source

Hou Jing*, Chen Shengping, Chen Zilun, Wang Zefeng, Zhang Bin, and Song Rui
Author Affiliations
  • [in Chinese]
  • show less
    References(70)

    [1] [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

    [2] [2] Dudley John M, Taylor James Roy. Supercontinuum Generation in Optical Fibers[M]. Cambridge: Cambridge University Press, 2010.

    [3] [3] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000  via four-photon coupling in glass[J]. Phys Rev Lett, 1970, 24(11): 584-587.

    [4] [4] Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Phys Rev Lett, 1970, 24(11): 592-594.

    [5] [5] Lin Chinlon, Stolen R H. New nanosecond continuum for excited state spectroscopy[J]. Appl Phys Lett, 1976, 28(4): 216-218.

    [6] [6] Dudley John M, Genty Goёry, Coen Stéphane. Supercontinuum generation in photonic crystal fiber[J]. Rev Mod Phys, 2006, 78(4): 1135-1184.

    [8] [8] Song Rui, Hou Jing, Chen Shengping, et al.. All-fiber 177.6 W supercontinuum source[J]. Acta Physica Sinica, 2012, 61(5): 054217.

    [9] [9] Travers J C, Kennedy R E, Popov S V, et al.. Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber[J]. Opt Lett, 2005, 30(15): 1938-1940.

    [10] [10] Champert P A, Popov S V, Taylor J R. Generation of multiwatt, broadband continua in holey fibers[J]. Opt Lett, 2002, 27(2): 122-124.

    [11] [11] Travers J C, Rulkov A B, Cumberland B A, et al.. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser[J]. Opt Express, 2008, 16(19): 14435-14447.

    [12] [12] Chen Kang Kang, Alam Shaif-Ul, Price Jonathan H, et al.. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power[J]. Opt Express, 2010, 18(6): 5426-5432.

    [13] [13] Guo Chunyu, Ruan Shuangchen, Yan Peiguang, et al.. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser[J]. Opt Express, 2010,18(11): 11046-11051.

    [15] [15] Li Bin, Fang Xiaohui, Liu Bowen, et al.. Research on 7.45 W supercontinuum generation by femtosecond laser[J]. Infrared and Laser Engineering, 2012, 41(8): 2012-2016.

    [16] [16] Ge Tingwu, Yu Feng, Zhang Wenqi, et al.. Home|made all-fiber supercontinuum with average power above 8 W[J]. Chinese J Lasers, 2011, 38(2): 0202003-6.

    [17] [17] Guo Chunyu, Ruan Shuangshen, Chen Zuchong, et al.. An all fiber supercontinuum source pumped with a 18.4 W picosecond fiber laser[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(3): 218-224.

    [18] [18] Hu Xiaohong, Zhang Wei, Yang Zhi, et al.. High average power, strictly all-fiber supercontinuum source with good beam quality[J]. Opt Lett, 2011, 36(14): 2659-2661.

    [19] [19] Song Rui, Hou Jing, Chen Shengping, et al.. 157 W all-fiber high-power picosecond laser[J]. Appl Opt, 2012, 51(13): 2497-2500.

    [20] [20] Chen Sheng-Ping, Chen Hong-Wei, Hou Jing, et al.. 100 W all fiber picosecond MOPA laser[J]. Opt Express, 2009, 17(26): 24008-24012.

    [21] [21] Chen H W, Lei Y, Chen S P, et al.. High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core[J]. Appl Phys B, 2012, 109(2): 233-238.

    [22] [22] Lin Dongfeng, Chen Shengping, Hou Jing, et al.. Ultra-short pulsed fiber laser in MOPA configuration[J]. Photoelectronics Technology, 2008, 28(4): 277-282.

    [23] [23] Gu Qingyuan, Hou Jing, Cheng Xiangai, et al.. All-fiber passive mode-locked laser realized by semiconductor saturable absorber mirror[J]. Chinese J Lasers, 2008, 5: 655-659.

    [24] [24] Rui Song, Hong-Wei Chen, Sheng-Ping Chen, et al.. A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter[J]. J Optics, 2011,13(3): 035201.

    [28] [28] Lei Y, Chen H W, Chen H, et al.. All-fiber picoseconds MOPA laser with a narrow spectrum output[J]. Laser Phys, 2012, 22(9): 1411-1414.

    [29] [29] Rui Song, Shengping Chen, Jing Hou, et al.. All-fiber pulsed laser with narrow line width[C] Proceedings of 2011 International Conference on the Electronics and Optoelectronics (ICEOE), 2011, 3: 116-119.

    [30] [30] Yang W Q, Zhang B, Hou J, et al.. Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier[J]. Laser Phys Lett, 2013,10(4): 045106.

    [31] [31] Liu Pengzu. Research of MOPA-Frame 1550 nm Passively Mode-Locked Fiber Laser[D]. Changsha: National University of Defense Technology, 2011.

    [32] [32] Yang Weiqiang, Hou Jing, Zhang Bin, et al.. Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2 μm[J]. Appl Opt, 2012, 51(23): 5664-5667.

    [33] [33] Liu Shiyao. Passively Mode-Locked Fiber Laser and Its Dispersion Management[D]. Changsha: National University of Defense Technology, 2011.

    [34] [34] Liu Pengzu, Hou Jing, Zhang Bin, et al.. Passively mode-locked fiber laser by SESAM at 1550 nm[J]. Chinese J Lasers, 2011, 38(7): 0702017.

    [35] [35] Chen Zilun, Hou Jing, Xi Xiaoming, et al.. Endlessly single-mode operation of highly nonlinear photonic crystal fibers by controlled hole collapse[J]. Opt Commun, 2010, 283(23): 4645-4648.

    [36] [36] Chen Z, Xiong C, Xiao L M, et al.. More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing[J]. Opt Lett, 2009, 34(14): 2240-2242.

    [37] [37] Chen Zilun, Hou Jing, Jiang Zongfu. Post-processing techniques of photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2010, 47(2): 020602.

    [38] [38] Xi Xiaoming, Sun Guilin, Chen Zilun, et al.. The realization of taped photonic crystal fiber using ordinary fusing tapering rig[J]. Infrared and Laser Engineering, 2012, 41(6): 1481-1484.

    [39] [39] Xi Xiaoming, Chen Zilun, Sun Guilin, et al.. The hole-collapse splicing technology between ordinary fiber and solid-core photonic crystal fiber with a small core diameter[J]. Chinese J Lasers, 2011, 38(1): 0106004.

    [40] [40] Sun Guilin, Chen Zilun, Xi Xiaoming, et al.. Research on all-fiber deformation of the PCF core[J]. Acta Physica Sinica, 2011, 60(8): 084220.

    [41] [41] Sun Guilin. Studies on Controlled Air Hole Collapse in Photonic Crystal Fiber[D]. Changsha: National University of Defense Technology, 2010.

    [42] [42] Haihuan Chen, Zilun Chen, Xuanfeng Zhou, et al.. Cascaded PCF tapers for flat broadband supercontinuum generation[J]. Chin Opt Lett, 2012, 10(12): 120603.

    [43] [43] Huang Zhi-he, Hou Jing, Peng Yang, et al.. Surface plasmon resonance sensor based on supercontinuum source[C]. SPIE, 2011, 8191: 81910Z.

    [45] [45] Yang Peng, Jing Hou, Qisheng Lu. Simulation of a surface plasmon resonance based on photonic crystal fiber temperature sensor[C]. Proceedings of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2011, 1: 274-277.

    [46] [46] Aijun Jin, Zefeng Wang, Jing Hou, et al.. Experimental measurement and numerical calculation of dispersion of ZBLAN fiber[C]. Proceedings of 2011 International Conference on, the Electronics and Optoelectronics (ICEOE), 2011, 3: 181-184.

    [47] [47] Liu Xiaoming. Theoretical and Experimental Research of the Dispersion Character of Photonic Crystal Fiber[D]. Changsha: National University of Defense Technology, 2009.

    [49] [49] Jin Aijun. Research on the Coherence Properties of Supercontinuum Source[D]. Changsha: National University of Defense Technology, 2011.

    [50] [50] Jin Aijun, Wang Zefeng, Hou Jing, et al.. Coherence properties of supercontinuum quantified by complex degree of self-coherence[J]. Acta Physica Sinica, 2012, 61(15): 154201.

    [51] [51] Li Ying, Hou Jing, Wang Yanbin, et al.. Theoretical research on the generation of coherent supercontinuum[J]. Acta Physica Sinica, 2012, 61(9): 094212.

    [52] [52] Wang Yanbin, Xiong Chunle, Hou Jing, et al.. Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers[J]. Acta Physica Sinica, 2011, 60(1): 014201.

    [53] [53] Wang Yanbin, Xiong Chunle, Hou Jing, et al.. Continuous wave, dual-wavelength-pumped supercontinuum generation in an all-fiber device[J]. Appl Opt, 2011,50(17): 2752-2758.

    [54] [54] Wang Y, Hou J, Xiong C, et al.. Improved dual-wavelength-pumped supercontinuum generation in an all-fiber device[C]. SPIE, 2010, 7987: 79870Z.

    [55] [55] Xi Xiaoming, Chen Zilun, Sun Guilin, et al.. Supercontinuum generation in a tapered photonic crystal fiber pumped by two wavelength[J]. Acta Optica Sinica, 2011, 31(2): 0206001.

    [56] [56] Chen Shengping, Wang Jianhua, Chen Hongwei, et al.. 35.6 W high-power all-fiber supercontinuum[J]. Chinese J Lasers, 2010, 37(12): 3018.

    [57] [57] Wei H F, Chen H W, Chen S P, et al.. A compact seven-core photonic crystal fiber supercontinuum source with 42.3 W output power[J]. Laser Phys Lett, 2013,10(4): 045101.

    [59] [59] Zhang Bin, Hou Jing, Jiang Zongfu. Effects of material dispersion on dispersion in bandgaps of all-solid photonic bandgap fibers[J]. J National University of Defense Technology, 2011, 33(2): 5-8.

    [61] [61] Zhou Hang, Chen Zilun, Li Jie, et al.. The effect of PCF combiners on the whole loss under different lengths of transition zone[C]. SPIE, 2011, 81911: 81911Y.

    [62] [62] Liang Dongming. Optical Fiber Combiner for Supercontinuum[D]. Changsha: National University of Defense Technology, 2009.

    [63] [63] Zhang B, Hou J, Liu P Z, et al.. Flat supercontinuum generation covering C-band to U-band in two-stage Er/Yb co-doped double-clad fiber amplifier[J]. Laser Phys, 2011, 21(11): 1895-1898.

    [65] [65] Song Rui, Hou Jing, Chen Shengping, et al.. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier[J]. Opt Lett, 2012, 37(9): 1529-1531.

    [66] [66] Song R, Hou J, Chen S P, et al.. Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts[J]. Laser Phys Lett, 2013, 10(1): 015401.

    [68] [68] Yang W Q, Zhang B, Hou J, et al.. Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier[J]. Laser Phys Lett, 2013,10(5): 055107.

    [69] [69] Zhang Bin, Hou Jing, Jiang Zongfu. Tellurite glass microstructured fibers for mid-IR supercontinuum generation[J]. Infrared and Laser Engineering, 2011, 40(2): 328-331.

    [70] [70] Zhang Bin, Hou Jing, Jiang Zongfu. Research progress on mid-infrared supercontinuum generation in nonsilica glass fibers[J]. Laser & Infrared, 2010, 40(6): 575-579.

    CLP Journals

    [1] Shi Weihua, Wang Mengyan. Generation and Control of Supercontinuum in Photonic Crystal Fiber with Three-Zero Dispersion Wavelengths[J]. Chinese Journal of Lasers, 2015, 42(8): 805009

    [2] Li Min, Huo Li, Wang Dong, Wang Qiang, Jiang Xiangyu, Lou Caiyun. Supercontinuum Generation Based on Dual-Wavelength Coherent Ultrashort Pulses[J]. Acta Optica Sinica, 2015, 35(4): 406001

    [3] Zhang Chengdong, Zhou Xuanfeng, Chen Zilun, Xu Xiaojun. Low Loss Fusion Splicing for Seven-Core Photonic Crystal Fiber by Selected Air Hole Collapse Technique[J]. Chinese Journal of Lasers, 2014, 41(10): 1005004

    Tools

    Get Citation

    Copy Citation Text

    Hou Jing, Chen Shengping, Chen Zilun, Wang Zefeng, Zhang Bin, Song Rui. Recent Developments and Key Technology Analysis of High Power Supercontinuum Source[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 20, 2013

    Accepted: --

    Published Online: Jan. 12, 2015

    The Author Email: Jing Hou (houjing25@sina.com)

    DOI:10.3788/lop50.080010

    Topics