Acta Optica Sinica, Volume. 42, Issue 17, 1717001(2022)

Large-Depth Quantitative Optical Imaging of Biological Tissues

Zhibo Wen, Kaiyuan Liu, Shenyi Jiang, Mubin He, Tao Han, Ke Si, Peng Li, Zhiyi Liu, Jun Qian, and Zhihua Ding*
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(125)

    [1] Fercher A F, Drexler W, Hitzenberger C K et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).

    [2] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).

    [3] Horton N G, Wang K, Kobat D et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 7, 205-209(2013).

    [4] Wang K, Horton N G, Xu C. Going deep: brain imaging with multi-photon microscopy[J]. Optics and Photonics News, 24, 32-39(2013).

    [5] Pearson J E, Hansen S. Experimental studies of a deformable-mirror adaptive optical system[J]. Journal of the Optical Society of America, 67, 325-333(1977).

    [6] Hardy J W. Active optics: a new technology for the control of light[J]. Proceedings of the IEEE, 66, 651-697(1978).

    [7] Grosso R P, Yellin M. The membrane mirror as an adaptive optical element[J]. Journal of the Optical Society of America, 67, 399-406(1977).

    [8] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression[J]. Nature Reviews Cancer, 2, 161-174(2002).

    [9] Geiger B, Bershadsky A, Pankov R et al. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton[J]. Nature Reviews Molecular Cell Biology, 2, 793-805(2001).

    [10] Abbott N J, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier[J]. Nature Reviews Neuroscience, 7, 41-53(2006).

    [11] Tomlins P H, Wang R K. Theory, developments and applications of optical coherence tomography[J]. Journal of Physics D, 38, 2519-2535(2005).

    [12] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [13] Li P, Yang S S, Ding Z H et al. Research progress in Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers, 45, 0207011(2018).

    [14] Wang C, Ding Z H, Mei S T et al. Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography[J]. Optics Letters, 37, 4555-4557(2012).

    [15] Li P, Ding Z H, Ni Y et al. Visualization of the ocular pulse in the anterior chamber of the mouse eye in vivo using phase-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 19, 090502(2014).

    [16] Sharma U, Kang J U. Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography[J]. Review of Scientific Instruments, 78, 113102(2007).

    [17] Moon S, Piao Z L, Kim C S et al. Lens-free endoscopy probe for optical coherence tomography[J]. Optics Letters, 38, 2014-2016(2013).

    [18] Lee J, Chae Y, Ahn Y C et al. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber[J]. Biomedical Optics Express, 6, 1782-1796(2015).

    [19] Ding Z, Qiu J, Shen Y et al. Lens-free all-fiber probe with an optimized output beam for optical coherence tomography[J]. Optics Letters, 42, 2814-2817(2017).

    [20] Li P, Reif R, Zhi Z W et al. Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo non-human primate eyes[J]. Journal of Biomedical Optics, 17, 076026(2012).

    [21] Gao S S, Jia Y L, Zhang M et al. Optical coherence tomography angiography[J]. Investigative Opthalmology & Visual Science, 57, OCT27-OCT36(2016).

    [22] Xing F J, Lee J H, Polucha C et al. Three-dimensional imaging of spatio-temporal dynamics of small blood capillary network in the cortex based on optical coherence tomography: a review[J]. Journal of Innovative Optical Health Sciences, 13, 2030002(2019).

    [23] Zhang A Q, Zhang Q Q, Chen C L et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. Journal of Biomedical Optics, 20, 100901(2015).

    [24] Kashani A H, Chen C L, Gahm J K et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications[J]. Progress in Retinal and Eye Research, 60, 66-100(2017).

    [25] Chen C L, Wang R K. Optical coherence tomography based angiography[J]. Biomedical Optics Express, 8, 1056-1082(2017).

    [26] Jia Y L, Bailey S T, Wilson D J et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology, 121, 1435-1444(2014).

    [27] Chu Z D, Lin J, Gao C et al. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography[J]. Journal of Biomedical Optics, 21, 066008(2016).

    [28] Chalam K V, Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. Journal of Ophthalmic & Vision Research, 11, 84-92(2016).

    [29] Roisman L, Zhang Q Q, Wang R K et al. Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration[J]. Ophthalmology, 123, 1309-1319(2016).

    [30] Liew Y M, McLaughlin R A, Gong P J et al. In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography[J]. Journal of Biomedical Optics, 18, 061213(2013).

    [31] Baran U, Choi W J, Wang R K. Potential use of OCT-based microangiography in clinical dermatology[J]. Skin Research and Technology, 22, 238-246(2016).

    [32] Ulrich M, Themstrup L, de Carvalho N et al. Dynamic optical coherence tomography in dermatology[J]. Dermatology, 232, 298-311(2016).

    [33] Baran U, Wang R K. Review of optical coherence tomography based angiography in neuroscience[J]. Neurophotonics, 3, 010902(2016).

    [34] Shin P, Choi W, Joo J et al. Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography[J]. Journal of Cerebral Blood Flow and Metabolism, 39, 1983-1994(2019).

    [35] Jia Y L, Li P, Wang R K. Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice[J]. Journal of Biomedical Optics, 16, 096019(2011).

    [36] Jia Y L, Wang R K. Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice[J]. Journal of Neuroscience Methods, 194, 108-115(2010).

    [37] Park K S, Shin J G, Qureshi M M et al. Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation[J]. Scientific Reports, 8, 11614(2018).

    [38] Yang S S, Liu K Z, Yao L et al. Correlation of optical attenuation coefficient estimated using optical coherence tomography with changes in astrocytes and neurons in a chronic photothrombosis stroke model[J]. Biomedical Optics Express, 10, 6258-6271(2019).

    [39] Yang S Z, Liu L W, Chang Y X et al. In vivo mice brain microcirculation monitoring based on contrast-enhanced SD-OCT[J]. Journal of Innovative Optical Health Sciences, 12, 1950001(2019).

    [40] Vakoc B J, Lanning R M, Tyrrell J A et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[J]. Nature Medicine, 15, 1219-1223(2009).

    [41] Braaf B, Donner S, Nam A S et al. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina[J]. Biomedical Optics Express, 9, 486-506(2018).

    [42] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2, 1184-1193(2011).

    [43] Gao S S, Jia Y L, Liu L et al. Compensation for reflectance variation in vessel density quantification by optical coherence tomography angiography[J]. Investigative Ophthalmology & Visual Science, 57, 4485-4492(2016).

    [44] de Carlo T E, Romano A, Waheed N K et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 1, 5(2015).

    [45] Li P, Huang Z Y, Yang S S et al. Adaptive classifier allows enhanced flow contrast in OCT angiography using a histogram-based motion threshold and 3D Hessian analysis-based shape filtering[J]. Optics Letters, 42, 4816-4819(2017).

    [46] Nam A S, Chico-Calero I, Vakoc B J. Complex differential variance algorithm for optical coherence tomography angiography[J]. Biomedical Optics Express, 5, 3822-3832(2014).

    [47] Zhang A Q, Wang R K. Feature space optical coherence tomography based micro-angiography[J]. Biomedical Optics Express, 6, 1919-1928(2015).

    [48] Cheng Y X, Guo L, Pan C et al. Statistical analysis of motion contrast in optical coherence tomography angiography[J]. Journal of Biomedical Optics, 20, 116004(2015).

    [49] Guo L, Li P, Pan C et al. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm[J]. Journal of Optics, 18, 025301(2016).

    [50] Huang L Z, Fu Y M, Chen R X et al. SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model[J]. IEEE Transactions on Medical Imaging, 38, 2695-2704(2019).

    [51] Li H K, Liu K Y, Cao T T et al. High performance OCTA enabled by combining features of shape, intensity, and complex decorrelation[J]. Optics Letters, 46, 368-371(2021).

    [52] Yang S S, Liu K Z, Ding H J et al. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model[J]. Journal of Cerebral Blood Flow and Metabolism, 39, 1381-1393(2019).

    [53] Chen R X, Yao L, Liu K Y et al. Improvement of decorrelation-based OCT angiography by an adaptive spatial-temporal kernel in monitoring stimulus-evoked hemodynamic responses[J]. IEEE Transactions on Medical Imaging, 39, 4286-4296(2020).

    [54] Deng X F, Liu K Y, Zhu T P et al. Dynamic inverse SNR-decorrelation OCT angiography with GPU acceleration[J]. Biomedical Optics Express, 13, 3615-3628(2022).

    [55] Zhang Y, Yao L, Yang F et al. INS-fOCT: a label-free, all-optical method for simultaneously manipulating and mapping brain function[J]. Neurophotonics, 7, 015014(2020).

    [56] McNichols R J, Cote G L. Optical glucose sensing in biological fluids: an overview[J]. Journal of Biomedical Optics, 5, 5-16(2000).

    [57] Shokrekhodaei M, Quinones S. Review of non-invasive glucose sensing techniques: optical, electrical and breath acetone[J]. Sensors, 20, 1251(2020).

    [58] De Pretto L R, Yoshimura T M, Ribeiro M S et al. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches[J]. Journal of Biomedical Optics, 21, 086007(2016).

    [59] Larin K V, Motamedi M, Ashitkov T V et al. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study[J]. Physics in Medicine and Biology, 48, 1371-1390(2003).

    [60] Liu K Y, Zhu T P, Yao L et al. Noninvasive OCT angiography-based blood attenuation measurements correlate with blood glucose level in the mouse retina[J]. Biomedical Optics Express, 12, 4680-4688(2021).

    [61] Yao L, Li H K, Liu K Y et al. Endoscopic optical coherence tomography angiography using inverse SNR-amplitude decorrelation features and electrothermal micro-electro-mechanical system raster scan[J]. Quantitative Imaging in Medicine and Surgery, 12, 3078-3091(2022).

    [62] Yao L, Zhou Y, Liu K Y et al. Endoscopic OCT angiography using clinical proximal-end scanning catheters[J]. Photonics, 9, 329(2022).

    [63] Wang T Y, Xu C. Three-photon neuronal imaging in deep mouse brain[J]. Optica, 7, 947-960(2020).

    [64] Cheng L C, Horton N G, Wang K et al. Measurements of multiphoton action cross sections for multiphoton microscopy[J]. Biomedical Optics Express, 5, 3427-3433(2014).

    [65] Ouzounov D G, Wang T Y, Wang M R et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain[J]. Nature Methods, 14, 388-390(2017).

    [66] Wang T Y, Ouzounov D G, Wu C Y et al. Three-photon imaging of mouse brain structure and function through the intact skull[J]. Nature Methods, 15, 789-792(2018).

    [67] Chen D X, Chen G, Jiang W et al. Association of the collagen signature in the tumor microenvironment with lymph node metastasis in early gastric cancer[J]. JAMA Surgery, 154, e185249(2019).

    [68] Cheng H, Tong S, Deng X Q et al. In vivo deep-brain imaging of microglia enabled by three-photon fluorescence microscopy[J]. Optics Letters, 45, 5271-5274(2020).

    [69] Liu H J, Deng X Q, Tong S et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots[J]. Nano Letters, 19, 5260-5265(2019).

    [70] Wang Y L, Chen M, Alifu N et al. Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse[J]. ACS Nano, 11, 10452-10461(2017).

    [71] Alifu N, Zebibula A, Zhang H Q et al. NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging[J]. Nano Research, 13, 2632-2640(2020).

    [72] Qin W, Alifu N, Lam J W Y et al. Facile synthesis of efficient luminogens with AIE features for three-photon fluorescence imaging of the brain through the intact skull[J]. Advanced Materials, 32, 2000364(2020).

    [73] Ni H W, Xu Z C, Li D Y et al. Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging[J]. Journal of Innovative Optical Health Sciences, 12, 1940005(2019).

    [74] Li D Y, Zhang H Q, Chu L L et al. Photosensitizer doped colloidal mesoporous silica nanoparticles for three-photon photodynamic therapy[J]. Optical and Quantum Electronics, 47, 3081-3090(2015).

    [75] Wang S W, Li X Q, Chong S Y et al. In vivo three-photon imaging of lipids using ultrabright fluorogens with aggregation-induced emission[J]. Advanced Materials, 33, 2007490(2021).

    [76] Choe K, Hontani Y, Wang T Y et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes[J]. Nature Immunology, 23, 330-340(2022).

    [77] Streich L, Boffi J C, Wang L et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy[J]. Nature Methods, 18, 1253-1258(2021).

    [78] Zhang C, Feng W, Zhao Y J et al. A large, switchable optical clearing skull window for cerebrovascular imaging[J]. Theranostics, 8, 2696-2708(2018).

    [79] Li D Y, Zheng Z, Yu T T et al. Visible‐near infrared‐II skull optical clearing window for in vivo cortical vasculature imaging and targeted manipulation[J]. Journal of Biophotonics, 13, e202000142(2020).

    [81] Xu Z R, Zhang Z J, Deng X Q et al. Deep-brain three-photon imaging enabled by aggregation-induced emission luminogens with near-infrared-III excitation[J]. ACS Nano, 16, 6712-6724(2022).

    [82] Ni H W, Wang Y L, Tang T et al. Quantum dots assisted in vivo two-photon microscopy with NIR-II emission[J]. Photonics Research, 10, 189-196(2022).

    [83] Li B, Wu C Y, Wang M R et al. An adaptive excitation source for high-speed multiphoton microscopy[J]. Nature Methods, 17, 163-166(2020).

    [84] Muth F, Healy S D. The role of adult experience in nest building in the zebra finch, Taeniopygia guttata[J]. Animal Behaviour, 82, 185-189(2011).

    [85] Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 45, 170489(2018).

    [86] Booth M J, Débarre D, Jesacher A. Adaptive optics for biomedical microscopy[J]. Optics and Photonics News, 23, 22-29(2012).

    [87] Ragazzoni R. Pupil plane wavefront sensing with an oscillating prism[J]. Journal of Modern Optics, 43, 289-293(1996).

    [88] Tyson R K, Wizinowich P L. Principles of adaptive optics[J]. Physics Today, 45, 100(1992).

    [89] Hampson K M, Turcotte R, Miller D T et al. Adaptive optics for high-resolution imaging[J]. Nature Reviews Methods Primers, 1, 68(2021).

    [90] Albert O, Sherman L, Mourou G et al. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy[J]. Optics Letters, 25, 52-54(2000).

    [91] Booth M J, Neil M A A, Juskaitis R et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences of the United States of America, 99, 5788-5792(2002).

    [92] Débarre D, Botcherby E J, Booth M J et al. Adaptive optics for structured illumination microscopy[J]. Optics Express, 16, 9290-9305(2008).

    [93] Débarre D, Botcherby E J, Watanabe T et al. Image-based adaptive optics for two-photon microscopy[J]. Optics Letters, 34, 2495-2497(2009).

    [94] Gould T J, Burke D, Bewersdorf J et al. Adaptive optics enables 3D STED microscopy in aberrating specimens[J]. Optics Express, 20, 20998-21009(2012).

    [95] Ji N, Milkie D E, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues[J]. Nature Methods, 7, 141-147(2010).

    [96] Ji N, Sato T R, Betzig E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 22-27(2012).

    [97] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 36, 870-872(2011).

    [98] Tang J Y, Germain R N, Cui M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 8434-8439(2012).

    [99] Kong L J, Cui M. In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique[J]. Optics Express, 22, 23786-23794(2014).

    [100] Yan W, Yang Y L, Tan Y et al. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples[J]. Photonics Research, 5, 176-181(2017).

    [101] Wu C X, Chen J J, Si K et al. Aberration corrections of doughnut beam by adaptive optics in the turbid medium[J]. Journal of Biophotonics, 12, e201900125(2019).

    [102] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [103] Jin Y C, Zhang Y Y, Hu L J et al. Machine learning guided rapid focusing with sensor-less aberration corrections[J]. Optics Express, 26, 30162-30171(2018).

    [104] Nishizaki Y, Valdivia M, Horisaki R et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).

    [105] Hu S W, Hu L J, Gong W et al. Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes[J]. Frontiers of Information Technology & Electronic Engineering, 22, 1277-1288(2021).

    [106] Zheng Y, Chen J J, Wu C X et al. Adaptive optics for structured illumination microscopy based on deep learning[J]. Cytometry Part A, 99, 622-631(2021).

    [107] Hu L J, Hu S W, Gong W et al. Image enhancement for fluorescence microscopy based on deep learning with prior knowledge of aberration[J]. Optics Letters, 46, 2055-2058(2021).

    [108] Hu L J, Hu S W, Gong W et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection[J]. Optics Express, 27, 33504-33517(2019).

    [109] Lin H X, Zuo N, Zhuo S M et al. Application of multiphoton microscopy in disease diagnosis[J]. Chinese Journal of Lasers, 45, 0207014(2018).

    [110] Liu Z Y, Meng J, Qiu J R et al. Accurate characterization of spatial orientations of fiber-like structures in biological tissues and its applications[J]. Chinese Journal of Lasers, 47, 0207002(2020).

    [111] Napadow V J, Chen Q, Mai V et al. Quantitative analysis of three-dimensional-resolved fiber architecture in heterogeneous skeletal muscle tissue using NMR and optical imaging methods[J]. Biophysical Journal, 80, 2968-2975(2001).

    [112] Altendorf H, Decencière E, Jeulin D et al. Imaging and 3D morphological analysis of collagen fibrils[J]. Journal of Microscopy, 247, 161-175(2012).

    [113] Schriefl A J, Zeindlinger G, Pierce D M et al. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries[J]. Journal of the Royal Society, 9, 1275-1286(2012).

    [114] Barnes C, Speroni L, Quinn K P et al. From single cells to tissues: interactions between the matrix and human breast cells in real time[J]. PLoS One, 9, e93325(2014).

    [115] Zemel A, Rehfeldt F, Brown A E X et al. Optimal matrix rigidity for stress-fibre polarization in stem cells[J]. Nature Physics, 6, 468-473(2010).

    [116] Sivaguru M, Durgam S, Ambekar R et al. Quantitative analysis of collagen fiber organization in injured tendons using Fourier transform-second harmonic generation imaging[J]. Optics Express, 18, 24983-24993(2010).

    [117] Bancelin S, Nazac A, Ibrahim B H et al. Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging[J]. Optics Express, 22, 22561-22574(2014).

    [118] Lau T Y, Ambekar R, Toussaint K C. Quantification of collagen fiber organization using three-dimensional Fourier transform-second-harmonic generation imaging[J]. Optics Express, 20, 21821-21832(2012).

    [119] Liu Z Y, Quinn K P, Speroni L et al. Rapid three-dimensional quantification of voxel-wise collagen fiber orientation[J]. Biomedical Optics Express, 6, 2294-2310(2015).

    [120] Liu Z Y, Pouli D, Sood D et al. Automated quantification of three-dimensional organization of fiber-like structures in biological tissues[J]. Biomaterials, 116, 34-47(2017).

    [121] Ambekar R, Lau T Y, Walsh M et al. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging[J]. Biomedical Optics Express, 3, 2021-2035(2012).

    [122] Nair S N, Dasari A, Yue C Y et al. Failure behavior of unidirectional composites under compression loading: effect of fiber waviness[J]. Materials, 10, 909(2017).

    [123] Qian S H, Meng J, Feng Z et al. Mapping organizational changes of fiber‐like structures in disease progression by multi-parametric, quantitative imaging[J]. Laser & Photonics Reviews, 16, 2100576(2022).

    [124] Qian S H, Meng J, Liu W J et al. Identification of endoplasmic reticulum formation mechanism by multi-parametric, quantitative super-resolution imaging[J]. Optics Letters, 47, 357-360(2022).

    [125] Meng J, Feng Z, Qian S H et al. Mapping physiological and pathological functions of cortical vasculature through aggregation-induced emission nanoprobes assisted quantitative, in vivo NIR-II imaging[J]. Biomaterials Advances, 136, 212760(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zhibo Wen, Kaiyuan Liu, Shenyi Jiang, Mubin He, Tao Han, Ke Si, Peng Li, Zhiyi Liu, Jun Qian, Zhihua Ding. Large-Depth Quantitative Optical Imaging of Biological Tissues[J]. Acta Optica Sinica, 2022, 42(17): 1717001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical optics and biotechnology

    Received: Jun. 14, 2022

    Accepted: Jul. 28, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Ding Zhihua (zh_ding@zju.edu.cn)

    DOI:10.3788/AOS202242.1717001

    Topics