Acta Optica Sinica, Volume. 31, Issue 9, 900137(2011)

Overview and Forecast of Fiber Optic White-Light Interfreometry

Yuan Libo*
Author Affiliations
  • [in Chinese]
  • show less
    References(205)

    [1] [1] E. Wolf. A macroscopic theory of interference and diffraction of light from finite sources II. Fields with a spectral range of arbitrary width [J]. Proc. Roy. Soc. London A, 1955, 230: 246~265

    [2] [2] A. Blanc-Lapierre , Dumonted. Rev. Opt., 1955, 34(1): 21

    [3] [3] S. A. Al-Chalabi, B. Chlshaw, D. E. N. David. Partially coherent sources in interferometric sensors[C]. Proc. 1st International Conference on Optical Fiber Sensors, London, 1983. 132~135

    [4] [4] K. Takada, J. Noda, K. Okamoto. Measurement of spatial distribution of mode coupling in birefringent polarization-maintaining fiber with new detection scheme[J]. Opt. Lett., 1986, 1986, 11(10): 680~682

    [5] [5] R. C. Youngquist, S. Carr, D. E. N. Davies. Optical coherence-domain reflectometry: a new optical evaluation technique[J]. Opt. Lett., 1987, 12(3): 158~160

    [6] [6] D. Huang, E. A. Swanson, C. P. Lin et al.. Optical coherence tomography[J]. Science, 1991, 254:1178~1181

    [7] [7] M. A. Choma, M. V. Sarunic, C. H. Yang et al.. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Opt. Express, 2003, 11(18): 2183~2189

    [8] [8] J. F. de Boer, B. Cense, B. H. Park et al.. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Opt. Lett., 2003, 28(21): 2067~2069

    [9] [9] R. Leitgeb, C. K. Hitzenberger, A. F. Fercher. Performance of Fourier domain versus time domain optical coherence tomography[J]. Opt. Express, 2003, 11(8): 889~894

    [10] [10] M. Wojtkowski, T. Bajraszewski, P. Targowski et al.. Real-time in vivo imaging by high-speed spectral optical coherence tomography[J]. Opt. Lett., 2003, 28(19): 1745~1747

    [11] [11] S. H. Yun, G. J. Tearney, B. E. Bouma et al.. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength[J]. Opt. Express, 2003, 11(26): 3598~3604

    [12] [12] S. H. Yun, G. J. Teamey, J. F. de Boer et al.. High-speed optical frequency-domain imaging[J]. Opt. Express, 2003, 11(22): 2953~2963

    [13] [13] E. Wolf. Unified theory of coherence and polarization of random electromagnetic beams[J]. Phys. Lett. A, 2003, 312(5-6): 263~267

    [14] [14] P. Réfrégier, A. Roueff. Invariant degrees of coherence of partially polarized light[J]. Opt. Express, 2005, 13(16): 6051~6060

    [15] [15] M. Born, E. Wolf. Principle of Optics[M]. 7th ed (Expanded), Cambridge: University Press, 1999

    [16] [16] C. Delisle, P. Cielo. Application de la modulation spectrale a la transmission de l′information[J]. Canad. J. Phys., 1975, 53(11): 1047~1053

    [17] [17] C. Delisle, P. Cielo. Multiplexing in optical communications by interferometry with a large path-length difference in white light[J]. Canad. J. Phys., 1976, 54(12): 2322~2331

    [18] [18] T. Bosselmann, R. Ulrich. High-accuracy position-sensing with fiber-coupled white-light interferometers[C]. Proc. 2nd International Conference on Optical Fiber Sensors, 1984. 361~364

    [19] [19] G. Boheim. Fiber-linked interferometric pressure sensor[J]. Rev. Sci. Instrum., 1987, 58(9): 1655~1659

    [20] [20] M. T. Velluet, P. Graindorge, H. J. Arditty. Fiber optic pressure sensor using white-light interferometry[C]. SPIE, 1987, 838, 78~83

    [21] [21] D. Trouchet, B. Laloux, P. Graindorge. Prototype industrial multi-parameter FO sensor using white light interferometry[C]. Proc. 6th International Conference on Optical Fiber Sensors, 1989. 227~233

    [22] [22] G. Boheim. Fiber optic thermometer using semiconductor etalon sensor[J]. Electron. Lett., 1986, 22(5): 238~239

    [23] [23] J. C. Harl, E. W. Saaski, G. L. Mitchell. Fiber optic temperature sensor using spectral modulation[C]. SPIE, 1987, 838: 257~261

    [24] [24] A. D. Kersey, A. Dandridge. Dual-wavelength approach to interferometric sensing[C]. SPIE, 1987, 798, 176~181

    [25] [25] F. Farahi, T. P. Newson, J. D. C. Jones et al.. Coherence multiplexing of remote fiber Fabry-Perot sensing system[J]. Opt. Commun., 1988, 65(5): 319~321

    [26] [26] V. Gusmeroli, P. Vavassori, M. Martinelli. A coherence-multiplexed quasi-distributed polarimetric sensor suitable for structural monitoring[C]. Proc. 6th International Conference on Optical Fiber Sensors, 1989, 513~518

    [27] [27] G. Kotrotsios, Parriaux. White light interferometry for distributed sensing on dual mode fibers monitoring[C]. Proc. 6th International Conference on Optical Fiber Sensors, 1989, 568~574

    [28] [28] K. Takada, I. Yokohama, K. Chida et al.. New measurement system for fault location in optical waveguide devices based on an interferometric technique[J]. Appl. Opt., 1987, 26(9): 1603~1606

    [29] [29] B. L. Danielson, C. D. Whittenberg. Guided-wave reflectometry with micrometer resolution[J]. Appl. Opt., 1987, 26(14): 2836~2842

    [30] [30] J. Ballif, R. Gianotti, R. Walti et al.. Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry[J]. Opt. Lett., 1997, 22(11): 757~759

    [31] [31] F. Lindgren, R. Gianotti, R. Walti et al.. -78-dB shot-noise limited optical low-coherence reflectometry at 42-m/s scan speed[J]. IEEE Photon. Lett., 1997, 9(12): 1613~1615

    [32] [32] J. Szydlo, H. Bleuler, R. Walti et al.. High-speed measurements in optical low-coherence reflectometry[J]. Meas. Sci. Technol., 1998, 9(8): 1159~1162

    [33] [33] A. Kock, R. Ulrich. Displacement sensor with electronically scanned white-light interferometer[C]. SPIE, 1990, 1267: 128~133

    [34] [34] S. Chen, B. T. Meggitt, A. J. Rogers. Electronically scanned white-light interferometry with enhanced dynamic range[J]. Electron. Lett., 1990, 26(20): 1663~1665

    [35] [35] S. Chen, B. T. Meggitt, A. J. Rogers. An electronically scanned white-light Young′s interferometer[J]. Opt. Lett., 1991, 16(10): 761~763

    [36] [36] S. Chen, A. W. Palmer, K. T. V. Grattan et al.. Study of electronically scanned optical fiber Fizeau interferometer[J]. Electron. Lett., 1991, 27(12): 1032~1034

    [37] [37] S. Chen, K. T. V. Grattan, A. W. Palmer et al.. Digital processing techniques for electronically scanned optical fiber white light interferometry[J]. Appl. Opt., 1992, 31(28): 6003~0010

    [38] [38] S. Chen, K. T. V. Grattan, B. T. Meggitt et al.. Instantaneous fringe-order identification using dual broad source with wildly spaced wavelengths[J]. Electron. Lett., 1993, 29(4): 334~335

    [39] [39] Y. J. Rao, Y. N. Ning, D. A. Jackson. Synthesized source for white-light sensing systems[J]. Opt. Lett., 1993, 18(6): 462~464

    [40] [40] D. N. Wang, Y. N. Ning, K. T. V. Grattan et al.. Three-wavelength combination source for white-light interferometry[J]. IEEE Photon. Technol. Lett., 1993, 5(11): 1350~1352

    [41] [41] L. B. Yuan. White light interferometric fiber-optic strain sensor with three-peak-wavelength broadband LED source[J]. Appl. Opt., 1997, 36(25): 6246~6250

    [42] [42] Q. Wang, Y. N. Ning, A. W. Palmer et al.. Central fringe identification in a white light interferometer using a multi-stage-squaring signal processing scheme[J]. Opt., Commun., 1995, 117(3-4): 241~244

    [43] [43] J. L. Brooks, R. H. Wentworth, R. C. Youngquist et al.. Coherence multiplexing of fiber-optic interferometric sensors[J]. J. Lightwave Technol., 1985, 3(5): 1062~1072

    [44] [44] V. Gsmeroli, P. Vavassori, M. Martinelli. A coherence-multiplexed quasi-distributed polarimetric sensor suitable for structure monitoring[C]. Proc. 6th International Conference on Optical Fiber Sensors, Paris, 1989, 513~518

    [45] [45] C. Lecot, J. J. Guerin, M. Lequime. White light fiber optic sensor network for the thermal monitoring of the stator in a nuclear power plant alternator sensors[C]. Proc. 9th International Conference on Optical Fiber Sensors, Florence, 1993, 271~274

    [46] [46] Y. J. Rao, D. A. Jackson. A prototype multiplexing system for use with a large number of fiber-optic-based extrinsic Fabry-Perot sensors exploiting low coherence interrogation[C]. SPIE, 1995, 2507: 90~98

    [47] [47] W. V. Sorin, D. M. Baney. Multiplexed sensing using optical low-coherence reflectometry[J]. IEEE Photon. Technol. Lett., 1995, 7(8): 917~919

    [48] [48] D. Inaudi, S. Vurpillot, S. Loret. In-line coherence multiplexing of displacement sensors, a fiber optic extensometer[C]. SPIE, 1996, 2718: 251~257

    [49] [49] L. B. Yuan, F. Ansari. White light interferometric fiber optic distribution strain sensing system[J]. Sensors and Actuators: A. Physical, 1997, 63(3): 177~181

    [50] [50] L. B. Yuan, L. M. Zhou. 1×N star coupler as distributed fiber optic strain sensor using in white light interferometer[J]. Appl. Opt., 1998, 37(19): 4168~4172

    [51] [51] L. B. Yuan, L. M. Zhou, W. Jin. Quasi-distributed strain sensing with white-light interferometry: a novel approach[J]. Opt. Lett., 2000, 25(15): 1074~1076

    [52] [52] D. Inaudi, A. Elamari, L. Pflug et al.. Low-coherence deformation sensors for monitoring of civil-engineering structures[J]. Sensors and Actuators A, 1994, 44(2): 125~130

    [53] [53] V. Bhatia, K. A. Murphy, R. O. Claus et al.. Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system[J]. Meas. Sci. Technol., 1996, 7(1): 58~61

    [54] [54] L. B. Yuan, L. M. Zhou, J. S. Wu. Fiber-optic temperature sensor with duplex michleson interferometric technique[J]. Sensors and Actuators: A, Physical, 2000, 86(1-2): 2~7

    [55] [55] L. B. Yuan, L. M. Zhou, W. Jin. Recent progress of white light interferometric fiber optic strain sensing techniques[J]. Review of Scientific Instruments, 2000, 71(12): 4648~4654

    [56] [56] L. B. Yuan, Q. B. Li, Y. J. Liang et al.. Fiber optic 2-D strain sensor for concrete specimen[J]. Sensors and Actuators A, 2001, 94(1-2): 25~31

    [57] [57] E. Udd. (ed), Fiber Optic Smart Structures[B]. New York: Wiley, 1995

    [59] [59] Zhang Jinghua, Wang Chunhua. Affect of power spectrum of source on white-light interference measurement [J]. Optical Technology, 1997, 33(5): 30~35

    [60] [60] Wang Qi, Zhang Zhipeng, Li Yianying. A fiber optic sensing system using dual Fabry-Perot cavities [J]. J. Huazhong Univ. of Sci. & Technol., 1993, 21(5): 143~146

    [61] [61] Li Xuesong, Liao Yanbiao, Li Tianchu et al.. White-light scanning fiber Michelson interferometer [J]. Acta Metrologica Sinica, 1996, 17(4): 241~245

    [63] [63] Zhong Kejiang, Wang Tao. Research on fiber white-light interferometer [J]. Laser & Infrared, 1997, 27(4): 242~244

    [64] [64] Li Maohe, Zhang Meidun. Optical path difference measurement of fiber interferometer [J]. Acta Photonica Sinica, 1999, 28(8): 740~743

    [65] [65] Li Maohe, Zhang Meidun. Refractive index Measurement by optical fiber michelson interferometer [J]. Acta Optica Sinica, 2000, 20(16): 1294~1296

    [66] [66] Li Li, Wang Chunhua, Huang Zhaoming. All fiber sensor by weak-coherence [J]. Acta Optica Sinica, 1997, 17(9): 1265~1269

    [67] [67] Yuan Libo. Effect of temperature and strain on fiber optic refractive index [J]. Acta Optica Sinica, 1997, 17(12): 1714~1717

    [68] [68] Zhang Zhiyao, Zhou Xiaojun. Experimental study on white light interferential distributed fiber optic press sensor by multi-points pressed [J]. J. China Academy of Electronics and Information Technology, 2006, 1(4): 364~368

    [70] [70] Jing Wencai, Li Qiang, Ren Li et al.. Application of wavelet transform in the data processing of white-light interferometry [J]. J. Optoelectronics·Laser, 2005, 16(2): 195~198

    [71] [71] Zhang Hongxia, Zhang Yimo, Jing Wencai et al.. White light interference envelope extract in polarization coupling analyzer[J]. J. Optoelectronics·Laser, 2007, 18(4): 450~453

    [72] [72] Tang Feng, Wang Xiangzhao, Zhang Yimo et al.. Distributed measurement of birefringence dispersion in polarization-maintainging fibers [J]. Opt. Lett., 2006, 31(23): 3411~3413

    [73] [73] Tang Feng, Wang Xiang-zhao, Zhang Yi-mo et al.. Characterization of birefringence dispersion in polarization-maintainging fibers by use of white-light interferometry[J]. Appl. Opt., 2007, 46(19): 4073~4080

    [74] [74] Meng Zhuo, X. Steve Yao, Yao Hui et al.. Measurement of the refractive index of human teeth by optical coherence tomography[J]. J. Biomed. Opt., 2009, 14(3): 034010

    [75] [75] Meng Zhuo, Yao Xiaotian, Lan Shoufeng et al.. Study of automatic elimination of polarization fluctuation method for all-fiber oral OCT system[J]. J. Optoelectronics·Laser, 2009, 20(1): 133~136

    [76] [76] Yun-Jiang Rao, David A. Jackson. Recent progress in fibre optic low-coherence interferometry[J]. Meas. Sci. Technol., 1996, 7: 981~999

    [78] [78] Jing Zhenguo. Study on White Light Extrinsic Fabry-Perot Interferometric Optical Fiber Sensor and its Applications [D]. Dalian University of Technology, 2006

    [79] [79] Yi Jiang. Wavelength scanning white-light interferometry with a 3×3 coupler based interferometer[J]. Opt . Lett., 2008, 33(16): 1869~1871

    [80] [80] Yi Jiang. Fourier transform white-light interferometry for the measurement of fiber optic extrinsic Fabry-Perot interferometric sensors[J]. IEEE Photon. Technol. Lett., 2008, 30(2): 75~77

    [81] [81] Y. Jiang, C. J. Tang. Fourier transform white-light interferometry based spatial frequency division multiplexing of extrinsic Fabry-Peort interferometric sensors[J]. Review of Scientific Instruments, 2008, 79(10): 106105

    [82] [82] Zhou Xiaojun, Gong Junjie, Liu Yongzhi et al.. Analysis of white-light interference distributed optic fiber sensor by polarized modes coupling [J]. Acta Optica Sinica, 2004, 24(10): 605~608

    [83] [83] Zhou Xiaojun, Du Dong, Gong Junjie. Study on spatial resolution of polarized-modes coupling distributed fiber optic sensor [J]. Acta Physica Sinica, 2005, 54(5): 2106~2110

    [84] [84] Yuan Libo, Zhou Limin, Jin Wei et al.. Low-coherence fiber optic sensors ring-network based on a Mach-Zehnder interrogator[J]. Opt. Lett., 2002, 27(11): 894~896

    [85] [85] Yuan Libo, Yang Jun. Schemes of 3×3 star coupler based fiber-optic multiplexing sensors array[J]. Opt. Lett., 2005, 30(9): 961~963

    [86] [86] Yuan Libo, Yang Jun. Two-loop based low-coherence multiplexing fiber optic sensors network with Michelson optical path demodulator[J]. Opt. Lett., 2005, 30(6): 601~603

    [89] [89] L. B. Yuan, W. Jin, L. M. Zhou et al.. The temperature characteristic of fiber-optic per-embedded concrete bar sensor[J]. Sensors and Actuators A, 2001, 93(3): 206~213

    [90] [90] Yuan Libo, Yang Jun. Fiber Optic White Light Interferometric Sensing Technology[M].Beijing: Beihang University Press, 2001

    [91] [91] W. V. Sorin, D. M. Baney. A simple intensity noise reduction technique for optical low-coherence reflectometry[J]. IEEE Photon. Technol. Lett., 1992, 4(12): 1404~1406

    [92] [92] D. M. Baney, W. V. Sorin. Extended-range optical low-coherence reflectometry using a recirculating delay technique[J]. IEEE Photon. Technol. Lett., 1993, 5(9): 1109~1112

    [93] [93] D. M. Baney, W. V. Sorin. Optical low coherence reflectometry with range extension>150 m[J]. Electron. Lett., 1995, 31(20): 1775~1776

    [94] [94] G. J. Teamey, M. E. Brezinski, B. E. Bouma et al.. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 1997, 276(5321): 2037~2039

    [95] [95] J. G. Fujimoto, M. E. Brezinski, G. J. Tearney et al.. Optical biopsy and imaging using optical coherence tomography[J]. Nature Medicine, 1995, 1(9): 970~972

    [96] [96] M. R. Hee, C. A. Puliafito, C. Wong et al.. Optical coherence tomography of macular holes[J]. Ophthalmology, 1995, 102(5): 748~756

    [97] [97] M. R. Hee, C. R. Baumal, C. A. Puliafito et al.. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization[J]. Ophthalmology, 1996, 103(8): 1260~1270

    [98] [98] M. E. Brezinski, G. J. Tearney, N. J. Weissman et al.. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound[J]. Heart, 1997, 77(5): 397~403

    [99] [99] G. J. Tearney, M. E. Brezinski, J. F. Southern et al.. Optical biopsy in human gastrointestinal tissue using optical coherence tomography[J]. American J. Gastroenterology, 1997, 92(10): 1800~1804

    [100] [100] G. J. Tearney, M. E. Brezinski, J. F. Southern et al.. Optical biopsy in human urologic tissue using optical coherence tomography[J]. J. Urology, 1997, 157(5): 1915~1919

    [101] [101] F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov et al.. Endoscopic applications of optical coherence tomography[J]. Opt. Express, 1998, 3(6): 257~270

    [102] [102] M. R. Hee, C. A. Puliafito, J. S. Duker et al.. Topography of diabetic macular edema with optical coherence tomography[J]. Ophthalmology, 1998, 105(2): 360~370

    [103] [103] J. G. Fujimoto, S. A. Boppart, G. J. Tearney et al.. High resolution in vivo intra-arterial imaging with optical coherence tomography[J]. Heart, 1999, 82(2): 128~133

    [104] [104] X. D. Li, S. A. Boppart, J. Van Dam et al.. Optical coherence tomography: advanced technology for the endoscopic imaging of Barren′s esophagus[J]. Endoscopy, 2000, 32(12): 921~930

    [105] [105] S. A. Boppart, W. Luo, D. L. Marks et al.. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer[J]. Breast Cancer Research and Treatment, 2004, 84(2): 85~97

    [106] [106] T. Kubota, M. Nara, T. Yoshino. Interferometer for measuring displacement and distance[J]. Opt. Lett., 1987, 12(5): 310~312

    [107] [107] K. Takada, I. Yokohama, K. Chida et al.. New measurement system for fault location in optical waveguide devices based on an interferometric-technique[J]. Appl. Opt., 1987, 26(9): 1603~1606

    [108] [108] H. H. Gilgen, R. P. Novak, R. P Salathe et al.. Submillimeter optical reflectometrv[J]. J. Lightwave Technol., 1989, 7(8): 1225~1233

    [109] [109] K. Takada, K. Yukimatsu, M. Kobayashi et al.. Rayleigh backscattering measurement of single-mode fibers by low coherence optical time-domain reflectometer with 14 μm spatial resolution[J]. Appl. Phys. Lett., 1991, 59(2): 143~145

    [110] [110] A. F. Fercher, K. Mengedoht, W. Wemer. Eye-length measurement by interferometry with partially coherent light[J]. Opt. Lett., 1988, 13(3): 186~188

    [111] [111] J. G. Fujimoto, S. Desilvestri, E. P. Ippen et al.. Femtosecond optical ranging in biological systems[J]. Opt. Lett., 1986, 11(3): 150~152

    [112] [112] A. F. Fercher, C. K. Hitzenberger, W. Drexler et al.. In-vivo optical coherence tomography[J]. Amer. J. Ophthalmology, 1993, 116(1): 113~115

    [113] [113] E. A. Swanson, J. A. Izatt, M. R. Hee et al.. In vivo retinal imaging by optical coherence tomography[J]. Opt. Lett., 1993, 18(21): 1864~1866

    [114] [114] B. E. Applegate, C. H. Yang, A. M. Rollins et al.. Polarization-resolved second-harmonic generation optical coherence tomography in collagen[J]. Opt. Lett., 2004, 29(19): 2252~2254

    [115] [115] J. F. de Boer, T. E. Milner, M. J. C. van Gemert et al.. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography[J]. Opt. Lett., 1997, 22(12): 934~936

    [116] [116] M. R. Hee, D. Huang, E. A. Swanson et al.. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging[J]. J. Opt. Soc. Am. B-Optical Physics, 1992, 9(6): 903~908

    [117] [117] J. A. Izatt, M. D. Kulkami, S. Yazdanfar et al.. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography[J]. Opt. Lett., 1997, 22(18): 1439~1441

    [118] [118] Y. Jiang, I. Tomov, Y. M. Wang et al.. Second-harmonic optical coherence tomography[J]. Opt. Lett., 2004, 29(10): 1090~1092

    [119] [119] R. Leitgeb, M. Wojtkowski, A. Kowalczyk et al.. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography[J]. Opt. Lett., 2000, 25(11): 820~822

    [120] [120] U. Morgner, W. Drexler, R. X. Kartner et al.. Spectroscopic optical coherence tomography[J]. Opt. Lett., 2000, 25(2): 111~113

    [121] [121] A. L. Oldenburg, J. R. Gunther, S. A. Boppart. Imaging magnetically labeled cells with magnetomotive optical coherence tomography[J]. Opt. Lett., 2005, 30(7): 747~749

    [122] [122] A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick et al.. Magnetomotive contrast for in vivo optical coherence tomography[J]. Opt. Express, 2005, 13(17): 6597~6614

    [123] [123] C. E. Saxer, J. F. de Boer, B. H. Park et al.. High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin[J]. Opt. Lett., 2000, 25(18): 1355~1357

    [124] [124] C. Y. Xu, J. Ye, D. L. Marks et al.. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography[J]. Opt. Lett., 2004, 29(14): 1647~1649

    [125] [125] Y. H. Zhao, Z. P. Chen, C. Saxer et al.. Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Opt. Lett., 2000, 25(2): 114~116

    [126] [126] M. A. Choma, M. V. Sarunic, C. H. Yang et al.. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Opt. Express, 2003, 11(18): 2183~2189

    [127] [127] J. F. de Boer, B. Cense, B. H. Park et al.. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Opt. Lett., 2003, 28(21): 2067~2069

    [128] [128] R. Leitgeb, C. K. Hitzenberger, A. F. Fercher. Performance of Fourier domain versus time domain optical coherence tomography[J]. Opt. Express, 2003, 11(8): 889~894

    [129] [129] M. Wojtkowski, T. Bajraszewski, P. Targowski et al.. Real-time in vivo imaging by high-speed spectral optical coherence tomography[J]. Opt. Lett., 2003, 28(19): 1745~1747

    [130] [130] S. H. Yun, G. J. Tearney, B. E. Bouma et al.. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength[J]. Opt. Express, 2003, 11(26): 3598~3604

    [131] [131] D. C. Lee, J. Xu, M. V. Sarunic et al.. Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in xenopus leavis tadpoles[J]. Invest. Ophthalmol. Vis. Sci., 2010, 51(2): 1066~1070

    [132] [132] D. C. Adler, Y. Chen, R. Huber et al.. Three-dimensional endomicroscopy using optical cohe nature tomography[J]. Nature Photonics, 2007, 1(12): 709~716

    [133] [133] R. Huber, D. C. Adler, J. G. Fujimoto. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s[J]. Opt. Lett., 2006, 31(20): 2975~2977

    [134] [134] R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): a new laser operating regime ana appncamons for optical coherence tomography[J]. Opt. Express, 2006, 14(8): 3225~3237

    [135] [135] S. H. Yun, G. J. Tearney, B. J. Vakoc et al.. Comprehensive volumetric optical microscopy in vivo[J]. Nature Medicine, 2006, 12: 1429~1433

    [136] [136] A. M. Zysk, F. T. Nguyen, A. L. Oldenburg et al.. Optical coherence tomography: a review of clinical development from bench to bedside[J]. J. Biomed. Opt., 2007, 12(5): 051403

    [137] [137] V Guedes, J. S. Schuman, E. Hertzmark et al.. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes[J]. Ophthalmology, 2003, 110(1): 177~189

    [138] [138] M. Hangai, Y. Jima, N. Gotoh et al.. Three-dimensional imaging of macular holes with high-speed optical coherence tomography[J]. Ophthalmology, 2007, 114(4): 763~773

    [139] [139] T. H. Ko, J. G. Fujimoto, J. S. Duker et al.. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair[J]. Ophthalmology, 2004, 111(11): 2033~2043

    [140] [140] V. J. Srinivasan, M. Wojtkowski, A. J. Witkin et al.. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography[J]. Ophthalmology, 2006, 113(11): 2054~2065

    [141] [141] B. E. Bouma, G. J. Tearney, H. Yabushita et al.. Evaluation of intracoronary stenting by intravascular optical coherence tomography[J]. Heart, 2003, 89(3): 317~320

    [142] [142] A. Erglis, S. Jegere, K. Trusinskis et al.. Stent endothelization after paclitaxel eluting stent implantation in left main: A3 year intravascular ultrasound and optical coherence tomography follow-up[J]. Amer. J. Cardiology, 2009, 104(6): 13D

    [143] [143] E. Grube, U. Gerckens, L. Buellesfeld et al.. Intracoronary imaging with optical coherence tomography-a new high-resolution technology providing striking visualization in the coronary artery[J]. Circulation, 2002, 106: 2409~2410

    [144] [144] K. Ishibashi, H. Kitabata, T. Akasaka. Intracoronary optical coherence tomography assessment of spontaneous coronary artery dissection[J]. Heart, 2009, 95: 818

    [145] [145] I. K. Jang, B. E. Bouma, D. H. Kang et al.. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound[J]. J. Am. College of Cardiology, 2002, 39: 604~609

    [146] [146] O. Manfrini, N. J. Miele, B. h. Sharaf et al.. Qualitative results of intracoronary imaging during balloon inflation with optical coherence tomography in humans[J]. J. Am. College of Cardioblogy, 2003, 41(6): 60A

    [147] [147] Y. Ozaki, M. Okumura, J. Ishii et al.. Vulnerable lesion characteristics assessed by optical coherence tomography (OCT), intracoronary ultrasound (IVUS), angioscopy and quantitative coronary angiography (QCA)[J]. J. Am. College of Cardiology, 2006, 47(4): 53B

    [148] [148] N. Rosenthal, G. Guagliumi, V. Sirbu et al.. Comparison of intravascular ultrasound and optical coherence tomography for the evaluation of stent segment malapposition[J]. J. Am. College of Cardiology, 2009, 53(10): A22

    [149] [149] T. Yamaguchi, M. Terashima, T. Akasaka et al.. Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting[J]. Am. J. Cardiology, 2008, 101(5): 562~567

    [150] [150] W. B. Armstrong, J. M. Ridgway, D. E. Vokes et al.. Optical coherence tomography of laryngeal cancer[J]. Laryngoscope, 2006, 116(7): 1107~1113

    [151] [151] P. F. Escobar, J. L. Belinson, A. White et al.. Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva[J]. Inte. J. Gynecological Cancer, 2004, 14: 470~474

    [152] [152] L. P. Hariri, A. R. Tumlinson, D. G. Besselsen et al.. Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model[J]. Lasers in Surgery and Medicine, 2006, 38(4): 305~313

    [153] [153] Y. T. Pan, T. Q. Xie, C. W. Du et al.. Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography[J]. Opt. Lett., 2003, 28(24): 2485~2487

    [154] [154] B. E. Bouma, G. J. Tearney. Handbook of Optical Coherence Tomography[M]. New York; Marcel Dekker, 2002

    [155] [155] B. E. Bouma, G. J. Tearney. Clinical imaging with optical coherence tomography[J]. Academic Radiology, 2002, 9(8): 942~953

    [156] [156] W. Drexler, J. G. Fujimoto. Optical Coherence Tomography-Technology and Applications[M]. New York: Springer-Verlag, 2008

    [157] [157] A. F. Fercher, W. Drexler, C. K. Hitzenberger et al.. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 2003, 66: 239~303

    [158] [158] J. G. Fujimoto, C. Pitris, S. A. Boppart et al.. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy[J]. Neoplasia, 2000, 2(1-2): 9~25

    [159] [159] J. M. Schmitt. Optical coherence tomography (OCT): a review[J]. IEEE J. Sel. Topics in Quant. Electron., 1999, 5(4): 1205~1215

    [160] [160] P. H. Tomlins, R. K. Wang. Theory, developments and applications of optical coherence tomography[J]. J. Phys. D-Appl. Phys., 2005, 38: 2519~2535

    [161] [161] K. Bogunia-Kubik, M. Sugisaka. From molecular biology to nanotechnology and nanomedicine[J]. Biosystems, 2002, 65(2-3): 123~138

    [162] [162] O. C. Farokhzad, R. Langer. Nanomedicine: developing smarter therapeutic and diagnostic modalities[J]. Advanced Drug Delivery Reviews, 2006, 58(14): 1456~1459

    [163] [163] K. K. Jain. Nanomedicine: application of nanobiotechnology in medical practice[J]. Medical Principles and Practice, 2008, 17(2): 89~101

    [164] [164] G. M. Lanza, P. M. Winter, S. D. Caruthers et al.. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles[J]. Nanomedicine, 2006, 1(3): 321~329

    [165] [165] K. C. P Li, S. D. Pandit, S. Guccione et al.. Molecular imaging applications in nanomedicine[J]. Biomedical Microdevices, 2004, 6(2): 113~116

    [166] [166] Y. F. Liu, H. F. Wang. Nanomedicine nanotechnology tackles tumours[J]. Nature Nanotechnology, 2007, 2: 20~21

    [167] [167] Y. Y. Liu, H. Miyoshi, M. Nakamura. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles[J]. Inte. J. Cancer, 2007, 120(12): 2527~2537

    [168] [168] S. M. Moghimi, A. C. Hunter, J. C. Murray. Nanomedicine: current status and future prospects[J]. FASEB J., 2005, 19(3): 311~330

    [169] [169] V. Wagner, A. Dullaart, A. K. Bock et al.. The emerging nanomedicine landscape[J]. Nature Biotechnology, 2006, 24(10): 1211~1217l

    [170] [170] P. Gould. Multitasking nanoparticles target cancer-nanomedicine[J]. Nano Today, 2008, 3(1-2): 9

    [171] [171] P. Hervella, V. Lozano, M. Garcia-Fuentes. Nanomedicine: new challenges and opportunities in cancer therapy[J]. J. Biomedical Nanotechnology, 2008, 4(3): 276~292

    [172] [172] D. K. Kim, J. Dobson. Nanomedicine for targeted drug delivery[J]. J. Materials Chemistry, 2009, 19(35): 6294~6307

    [173] [173] C. Shaffer. Nanomedicine transforms drug delivery[J]. Drug Discovery Today, 2005, 10(23-24): 1581~1582

    [174] [174] B. Sumer, J. M. Gao. Theranostic nanomedicine for cancer[J]. Nanomedicine, 2008, 3(2): 137~140

    [175] [175] R. J. Zemp. Nanomedicine detecting rare cancer cells[J]. Nature Nanotechnology, 2009, 4(12): 798~799

    [176] [176] W. Drexler. Ultrahigh-resolution optical coherence tomography[J]. J. Biomed. Opt., 2004, 9(1): 47~74

    [177] [177] W.Drexler, U. Morgner, F. X. Kartner et al.. In vivo ultrahigh-resolution optical coherence tomography[J]. Opt. Lett., 1999, 24(17): 1221~1223

    [178] [178] I. Hartl, X. D. Li, C. Chudoba et al.. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Opt. Lett., 2001, 26(9): 608~610

    [179] [179] B. Povazay, K. Bizheva, A. Unterhuber et al.. Submicrometer axial resolution optical coherence tomography[J]. Opt. Lett., 2002, 27(20): 1800~1802

    [180] [180] T. S. Ralston, D. L. Marks, P. S. Carney et al.. Interferometric synthetic aperture microscopy[J]. Nature Physics, 2007, 3: 129~134

    [181] [181] T. S. Ralston, D. L. Marks, P. S. Carney et al.. Real-time interferometric synthetic aperture microscopy[J]. Opt. Express, 2008, 16(4): 2555~2569

    [182] [182] M. A. Choma, A. K. Ellerbee, C. H. Yang et al.. Spectral-domain phase microscopy[J]. Opt. Lett., 2005, 30(10): 1162~1164

    [183] [183] A. K. Ellerbee, T. L. Creazzo, J. A. Izatt. Investigating nanoscale cellular dynamics with cross-sectional spectral-domain phase microscopy[J]. Opt. Express, 2007, 15(13): 8115~8124

    [184] [184] C. Joo, T. Akkin, B. Cense et al.. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging[J]. Opt. Lett., 2005, 30(16): 2131~2133

    [185] [185] E. J. McDowell, A. K. Ellerbee, M. A. Choma et al.. Spectral-domain phase microscopy for local measurements of cytoskeletal rheology in single cells[J]. J. Biomed. Opt., 2007, 12(4): 044008

    [186] [186] D. C. Adler, T. H. Ko, P. R. Herz et al.. Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation[J]. Opt. Express, 2004, 12(22): 5487~5501

    [187] [187] H. Cang, T. Sun, Z. Y. Li et al.. Gold nanocages as contrast agents for spectroscopic optical coherence tomography[J]. Opt. Left., 2005, 30(22): 3048~3050

    [188] [188] A. L. Oldenburg, C. Y Xu, S. A. Boppart. Spectroscopic optical coherence tomography and microscopy[J]. IEEE J. Sel. Topics in Quant. Electron., 2007, 13(6): 1629~1640

    [189] [189] C. Y. Xu, P. S. Carney, S. A. Boppart. Wavelength-dependent scattering in spectroscopic optical coherence tomography[J]. Opt. Express, 2005, 13(14): 5450~5462

    [190] [190] J. J. Pasquesi, S. C. Schlachter, M. D. Boppart et al.. In vivo detection of exercise-induced ultrastructural changes in genetically altered murine skeletal muscle using polarization-sensitive optical coherence tomography[J]. Opt. Express, 2006, 14(4): 1547~1556

    [191] [191] D. L. Marks, S. A. Boppart. Nonlinear interferometric vibrational imaging[J]. Phys. Rev. Lett., 2004, 92(12): 123905

    [192] [192] Daniele Inaudi, Nicoletta Casanova. SMARTEC: bringing fiber optic sensors into concrete applications[C]. 15th Optical Fiber Sensor Conference, 6-10.5.2002, Portland USA

    [193] [193] Y. B. Yuan, L. M. Zhou, W. Jin et al.. Low-coherence fiber-optic sensor ring network based on a Mach-Zehnder interrogator[J]. Opt. Lett., 2002, 27(11): 894~896

    [194] [194] L. B. Yuan, L. M. Zhou, W. Jin et al.. Enhanced multiplexing capacity of low-coherence reflectometric sensors with a loop topology[J]. IEEE Photon. Technol. Lett., 2002, 14(8): 1157~1159

    [195] [195] L. B. Yuan, L. M. Zhou, W. Jin. Enhancement of multiplexing capability of low-coherence interferometric fiber sensor array by use of a loop topology[J]. IEEE J. Lightwave Technol., 2003, 21(5): 1313~1319

    [196] [196] L. B. Yuan, J. Yang. Two-loop based low-coherence multiplexing fiber optic sensors network with Michelson optical path demodulator[J]. Opt. Lett., 2005, 30(5): 601~603

    [197] [197] L. B. Yuan, L. M. Zhou, W. Jin. Design of a fiber-optic quasi-distributed strain sensors ring network based on a white-light interferometric multiplexing technique[J]. Appl. Opt., 2002, 41(34): 7205~7211

    [198] [198] L. B. Yuan. Modified Michelson fiber-optic interferometer: a remote low-coherence distributed strain sensor array[J]. Review of Scientific Instrumentation, 2003, 74(1): 270~272

    [199] [199] L. B. Yuan, J. Yang, L. M. Zhou et al.. Low-coherence michelson interferometric fiber-optic multiplexed strain sensor array: a minimum configuration[J]. Appl. Opt., 2004, 43(16): 3211~3215

    [200] [200] L. B. Yuan, J. Yang. Schemes of fiber-optic multiplexing sensors array based on a 3×3 star coupler[J]. Opt. Lett., 2005, 30(9): 961~963

    [201] [201] L. B. Yuan, J. Yang. Two-loop based low-coherence multiplexing fiber optic sensors network with Michelson optical path demodulator[J]. Opt. Lett., 2005, 30(5): 601~603

    [202] [202] L. B. Yuan, J. Yang. Fiber-optic low-coherence quasi-distributed strain sensing system with multi-configurations[J]. Measurement Science and Technology, 2007, 18(9): 2931~2937

    [203] [203] L. B. Yuan, Y. T. Dong. Multiplexed fiber optic twin-sensors array based on combination of a Mach-Zehnder and a Michelson interferometer[J]. J. Intelligent Materials System and Structures, 2009, 20(7): 809~813

    [204] [204] L. B. Yuan, J. Yang. A tunable Fabry-Perot resonator based fiber-optic white light interferometric sensor array[J]. Opt. Lett., 2008, 33(15): 1780~1782

    [205] [205] Y. G. Yuan, B. Wu, J. Yang et al.. Tunable optical path correlator for distributed strain or temperature sensing application[J]. Opt. Lett., 2010, 35(20): 3357~3359

    CLP Journals

    [1] Song Jingming, Guo Jianhua, Wang Xueqin, Hu Shuling. Radiation Induced Attenuation Effect for Optical Fibers[J]. Laser & Optoelectronics Progress, 2012, 49(8): 80008

    [2] Xu Hongjie, Feng Yu. Measurement of Beat-Length for Low-Birefringence Fibers Based on Wavelength Modulation[J]. Laser & Optoelectronics Progress, 2014, 51(3): 30601

    [3] Yu Haimin, Niu Yuan, Liu Guilin, Meng Zhuo, Yao Steve, Li Guohua. Sweep Light Source OCT Method for the Test of Textured Monocrystalline Silicon[J]. Laser & Optoelectronics Progress, 2013, 50(2): 21701

    [4] Jiang Nuan, Li Zhizhong, Yang Huayong, Hu Yongming. Birefringence Analysis of Polarization Maintaining Fiber and Research on Characteristic of All-Fiber Beat-Length Experimental Systems[J]. Acta Optica Sinica, 2012, 32(7): 706003

    Tools

    Get Citation

    Copy Citation Text

    Yuan Libo. Overview and Forecast of Fiber Optic White-Light Interfreometry[J]. Acta Optica Sinica, 2011, 31(9): 900137

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 12, 2011

    Accepted: --

    Published Online: Aug. 29, 2011

    The Author Email: Libo Yuan (lbyuan@vip.sina.com)

    DOI:10.3788/aos201131.0900137

    Topics