Infrared and Laser Engineering, Volume. 50, Issue 10, 20200482(2021)

Point cloud semantic segmentation method based on segmented blocks merging

Yunzheng Su1... Qun Hao1, Jie Cao1, Lei Yan1 and Shuai Wu2 |Show fewer author(s)
Author Affiliations
  • 1Bionic Robot Key Laboratory of Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
  • show less
    Figures & Tables(12)
    Data 1 semantic segmentation process
    Comparison of semantic segmentation of data 2, data 3, data 4 data 5 and data 6 before and after using the merge strategy
    DBSCAN partial segmentation
    Features distribution
    Comparison of semantic segmentation of data 1, data 2, data 3, data 4, data 5 and data 6 before and after using the merge strategy
    Comparison before and after KNN interpolation optimization
    • Table 1. 6 sets of data size

      View table
      View in Article

      Table 1. 6 sets of data size

      ItemRegion1/mRegion2/mRegion3/m
      X102.14449.87363.899
      Y25.47733.69940.929
      Z29.52818.74234.141
      ItemRegion4/mRegion5/mRegion6/m
      X124.01342.34791.563
      Y25.06822.04232.315
      Z17.06514.11833.042
    • Table 2. Confusion matrix

      View table
      View in Article

      Table 2. Confusion matrix

      ItemGround truth
      PositiveNegative
      PredictionPositiveTPFP
      NegativeFNTN
    • Table 3. Poles accuracy and recall

      View table
      View in Article

      Table 3. Poles accuracy and recall

      MethodRegion1Region2Region3
      AccRecallAccRecallAccRecall
      Original6.9%89.1%5.4%81.0%--
      Proposed49.7%95.2%100%87.1%--
      MethodRegion4Region5Region6
      AccRecallAccRecallAccRecall
      Original5.8%27.8%61.0%100%21.2%80.3%
      Proposed100%27.8%100%100%100%80.3%
    • Table 4. Trees accuracy and recall

      View table
      View in Article

      Table 4. Trees accuracy and recall

      MethodRegion1Region2Region3
      AccRecallAccRecallAccRecall
      Original62.0%12.7%87.9%76.2%100%45.4%
      Proposed99.6%99.9%99.8%100%100%99.7%
      MethodRegion4Region5Region6
      AccRecallAccRecallAccRecall
      Original99.4%96.2%100%98.8%99.7%95.1%
      Proposed99.4%100%100%100%99.7%100%
    • Table 5. Poles accuracy and recall

      View table
      View in Article

      Table 5. Poles accuracy and recall

      MethodRegion1Region2Region3
      AccRecallAccRecallAccRecall
      Original42.9%95.2%20.4%87.1%--
      Proposed49.4%95.2%100%87.1%--
      MethodRegion4Region5Region6
      AccRecallAccRecallAccRecall
      Original24.9%27.8%61%100%33.2%80.3%
      Proposed100%27.8%100%100%100%94.4%
    • Table 6. Trees accuracy and recall

      View table
      View in Article

      Table 6. Trees accuracy and recall

      MethodRegion1Region2Region3
      AccRecallAccRecallAccRecall
      Original99.6%97.7%99.8%95.4%100%99.3%
      Proposed99.6%99.9%99.8%100%100%99.7%
      MethodRegion4Region5Region6
      AccRecallAccRecallAccRecall
      Original99.4%99.3%100%98.8%99.7%96.9%
      Proposed99.4%100%100%100%99.9%100%
    Tools

    Get Citation

    Copy Citation Text

    Yunzheng Su, Qun Hao, Jie Cao, Lei Yan, Shuai Wu. Point cloud semantic segmentation method based on segmented blocks merging[J]. Infrared and Laser Engineering, 2021, 50(10): 20200482

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Dec. 15, 2020

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20200482

    Topics