Journal of Advanced Dielectrics, Volume. 14, Issue 4, 2440015(2024)
Enhancing the dielectric and piezoelectric properties of
[1] C. Hao, X. Jie, X. Jingwen, P. Tao, L. Hong, Z. Jianguo. Phase, domain, and microstructures in Sr2+ substituted low-temperature sintering PZT-based relaxor ferroelectrics. J. Am. Ceram. Soc., 104, 6226(2021).
[2] C. Jian, D. Zongzhen, Y. Yuting, H. Hu. The electrical properties of low-temperature sintered 0.07Pb(Sb1∕2Nb1∕2)O3–0.93Pb(ZrxTi1−x)O3 multilayer piezoceramic actuator. Ceram. Int., 47, 15195(2021).
[3] Y. Xiaole, H. Yudong, Z. Mupeng, Z. Mankang. Multiscale heterogeneity strategy in piezoceramics for enhanced energy harvesting performances. ACS Appl. Mater. Interf., 13, 17800(2021).
[4] Z. Shujun, R. Xia, L. Lebrun, D. Anderson, T. R. Shrout. Piezoelectric materials for high power, high temperature applications. Mater. Lett., 59, 3471(2005).
[5] L. Bruno, A. Poggialini, G. Felice. Design and calibration of a piezoelectric actuator for interferometric applications. Lasers Eng., 45, 1148(2007).
[6] H. Xing, W. Ren, W. Xiaoqing, P. Shi. Effect of Mn doping on structures and properties of chemical solution deposited lead zirconate titanate thick films with (100) preferential orientation. J. Appl. Phys., 114, 027017(2013).
[7] S. Shah, M. S. Ramachnadra Rao. Preparation and dielectric study of high-quality PLZT x/65/35 (x=6,7,8) ferroelectric ceramics. J. Appl. Phys., 71, 65(2000).
[8] V. Kayasu, M. Ozenbas. The effect of Nb doping on dielectric and ferroelectric properties of PZT thin films prepared by solution deposition. J. Eur Ceram. Soc., 29, 1157(2009).
[9] J. F. Tressler, S. Alkoy, R. E. Newnham. Piezoelectric sensors and sensor materials. J. Electroceram., 2, 257(1998).
[10] T. Tanaka, K. Okazaki, N. Ichinose. Present status of non-lead-based piezoelectrics ceramics. Key Eng. Mater., 157-158(1973).
[11] C. Hao, P. Tao, L. Yaxia, C. Qiang, L. Hong, Z. Jianguo. Enhancement of piezoelectric properties in low-temperature sintering PZN–PZT ceramics by Sr2+ substitution. J. Electron. Mater., 51, 1261(2022).
[12] G. Feng, D. Zhenqi, Y. Le, C. Lihong, T. Changsheng. Phase transitional behavior and piezoelectric properties of BiYbO3–Pb(Ti0.5Zr0.5)O3–LiNbO3 ceramics. Ceram. Int., 35, 2885(2009).
[13] S. Wongsaenmai, Y. Laosiritaworn, S. Ananta. Improving ferroelectric properties of Pb(Zr0.44Ti0.56)O3 ceramics by Pb(Mg1∕3Nb2∕3)O3 addition. Mater. Sci. Eng. B-Adv., 128, 83(2006).
[14] L. Yaxia, T. Pu, F. Shibo, L. Hong, Z. Jianguo. Enhanced piezoelectric properties in low-temperature sintering PZN–PZT ceramics by adjusting Zr/Ti ratio. J. Adv. Dielectr., 12, 2250001(2022).
[15] S. Liang et al. Piezoelectric properties of Fe2O3 doped BiYbO3–Pb(Zr,Ti)O3 high Curie temperature ceramics. Ceram. Int., 40, 11485(2014).
[16] H. Siyu et al. A novel piezoelectric ceramic with high Curie temperature and high piezoelectric coefficient. Ceram. Int., 46, 6212(2020).
[17] Y. Leyet, F. Guerrero, J. Perez de la Cruz. Relaxation dynamics of the conductive processes in BaTiO3 ceramics at high temperature. Mater. Sci. Eng. B-Adv., 171, 127(2010).
[18] C. Yu, L. Lingfeng, Z. Zhi, W. Yiying, C. Qiang, W. Qingyuan. La2O3-modified BiYbO3–Pb(Zr,Ti)O3 ternary piezoelectric ceramics with enhanced electrical properties and thermal depolarization temperature. J. Adv. Ceram., 12, 2226(2023).
[19] Z. Hua, V. Kovalb, H. Zhang, D. Zhang. Enhanced piezoelectricity in Na and Ce co-doped CaBi4Ti4O15 ceramics for high-temperature applications. J. Adv. Ceram., 12, 1331(2023).
[20] H. Yudong, Z. Limin, Z. Wenkang, S. Xuemei. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5PZN–0.5PZT systems. J. Appl. Phys., 102, 084507(2007).
[21] H. Jigong, X. Zhijun, C. Ruiqing, L. Wei, P. Fu. Good temperature stability and fatigue-free behavior in Sm2O3-modified 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free piezoelectric ceramics. Mater. Res. Bull., 65, 94(2015).
[22] Z. Mupeng, H. Yudong, Z. Mankang, Y. Hui. Shift of morphotropic phase boundary in high-performance fine-grained PZN–PZT ceramics. J. Eur. Ceram. Soc., 34, 2275(2014).
[23] W. Jiajia et al. High piezoelectricity and low strain hysteresis in PMN–PT-based piezoelectric ceramics. J. Adv. Ceram., 12, 792(2023).
[24] T. M. Kamel, G. d. With. Grain size effect on the poling of soft Pb(Zr,Ti)O3 ferroelectric ceramics. J. Eur. Ceram. Soc., 28, 851(2008).
[25] S. Wanting et al. Frequency-dependent ferroelectric and electrocaloric properties in bariumtitanate-based ceramics based on Maxwell relations. J. Adv. Dielectr., 14, 2440008(2024).
[26] A. E. Rüdiger. Structural and dynamic properties of oxygen vacancies in perovskite oxides analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques. Phys. Chem. Chem. Phys., 13, 368(2011).
[27] P. V. Lambeck, G. H. Jonker. The nature of domain stabilization in ferroelectric perovskites. J. Phys. Chem. Solids, 47, 453(1986).
[28] Q. Chen et al. Temperature dependent properties and poling effect of K4CuNb8O23 modified (Na0.5K0.5)NbO3 lead free piezoceramics. J. Appl. Phys., 117, 4121(2015).
[29] L. Yan et al. Enhanced piezoelectric properties and temperature stability in KNN-based textured ceramic. J. Adv. Dielectr., 12, 2244006(2022).
[30] C. Yu, Z. Huajiang, W. Qingyuan, Z. Jianguo. Doping level effects in Gd/Cr co-doped Bi3TiNbO9 Aurivillius-type ceramics with improved electrical properties. J. Mater., 8, 906(2021).
Get Citation
Copy Citation Text
Xingyu Wang, Lingfeng Li, Yu Chen. Enhancing the dielectric and piezoelectric properties of
Category: Research Articles
Received: May. 6, 2024
Accepted: May. 24, 2024
Published Online: Nov. 5, 2024
The Author Email: Chen Yu (chenyu01@cdu.edu.cn)