Laser & Optoelectronics Progress, Volume. 56, Issue 6, 061002(2019)

Bridge Crack Detection Algorithm Based on Image Processing under Complex Background

Liangfu Li** and Ruiyun Sun*
Author Affiliations
  • School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
  • show less
    Figures & Tables(15)
    Schematic of dataset amplification of bridge crack images. (a) Original image; (b) horizontal flip; (c) vertical flip; (d) linear transformation; (e) spatial filtering transformation
    Generative model
    Discriminant model
    Schematic of 4-layer DenseBlock
    Schematic of detection of high-resolution image
    Visualization comparison of cracks generated by DCGAN and BCIGM. (a) Nepoch=01; (b) Nepoch=03; (c) Nepoch=16; (d) Nepoch=25
    Visualization comparison of cracks generated by ReLU and SeLU. (a) Nepoch=01; (b) Nepoch=03; (c) Nepoch=16; (d) Nepoch=25
    Visualization comparison of experimental results with and without dataset amplification. (a) Original image; (b)label; (c) without dataset amplification; (d) with dataset amplification
    Comparison of crack detection results between existing algorithms and proposed algorithm. (a) Original image; (b) label; (c) threshold segmentation algorithm; (d) Canny algorithm; (e) NB-CNN algorithm; (f) random structure forest algorithm; (g) proposed algorithm
    Partial crack detection results by proposed algorithm. (a) Scene 1; (b) scene 2; (c) scene 3
    • Table 1. Network structure parameters of BCISM

      View table

      Table 1. Network structure parameters of BCISM

      Name oflayerSize ofkernel /(pixel×pixel)Stride /pixelSize of output featuremap /(pixel×pixel)Number offeature map
      Inputlayer--256×2563
      ConvolutionConvolution 5×51256×25648
      DenseBlockConvolution [3×3]×41256×25696
      Transition DownConvolution 1×11256×25696
      Max pooling 2×22128×12896
      DenseBlockConvolution [3×3]×51128×128156
      Transition DownConvolution 1×11128×128156
      Max pooling 2×2264×64156
      DenseBlockConvolution [3×3]×7164×64240
      Transition DownConvolution 1×1164×64240
      Max pooling 2×2232×32240
      DenseBlockConvolution [3×3]×10132×32360
      Transition DownConvolution 1×1132×32360
      Max pooling 2×22216×16360
      DenseBlockConvolution [3×3]×12116×16504
      Transition UpDeconvolution 3×3232×32504
      DenseBlockConvolution [3×3]×10132×32624
      Transition UpDeconvolution 3×3264×64624
      DenseBlockConvolution [3×3]×7164×64444
      Transition UpDeconvolution 3×32128×128444
      DenseBlockConvolution [3×3]×51128×128300
      Transition UpDeconvolution 3×32256×256300
      DenseBlockConvolution [3×3]×41256×256204
      ConvolutionConvolution 1×11256×2562
      Softmax----
    • Table 2. Proportion of number of different types of images in total dataset

      View table

      Table 2. Proportion of number of different types of images in total dataset

      Type ofpictureSimplebackgroundBackgroundwith obstaclesBackgroundwith largearea of stains
      Number ofpictures10449132755710
      Proportion /%35.545.119.4
    • Table 3. Influence of BCIGM on training speed under different conditions

      View table

      Table 3. Influence of BCIGM on training speed under different conditions

      ConditionTime /s
      Without 1×1 convolution kernel5.4801
      With 1×1 convolution kernel5.4312
    • Table 4. Effect of dataset amplification on experimental results

      View table

      Table 4. Effect of dataset amplification on experimental results

      Number oftraining samplesWith or withoutdataset amplificationNumber ofverification samplesPPrecision /%PRecall /%
      1183Without dataset amplification15613.517.9
      29434With dataset amplification15692.992.6
    • Table 5. Comparison of exiting semantic segmentation models and BCISM

      View table

      Table 5. Comparison of exiting semantic segmentation models and BCISM

      ModelPre-trainingParameter /MPPrecision /%PRecall /%PF1_Score /%Time /s
      SegNetTrue29.574.078.576.20.5823
      FCN8True134.586.983.485.10.3739
      DeepLabTrue37.382.680.981.70.9751
      FC-DenseNet56 (k=12)False1.589.887.688.70.1685
      FC-DenseNet67 (k=16)False3.589.088.888.90.2635
      FC-DenseNet103 (k=16)False9.493.092.192.50.2795
      BCISM (k=12)False2.892.992.692.80.1998
    Tools

    Get Citation

    Copy Citation Text

    Liangfu Li, Ruiyun Sun. Bridge Crack Detection Algorithm Based on Image Processing under Complex Background[J]. Laser & Optoelectronics Progress, 2019, 56(6): 061002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 12, 2018

    Accepted: Sep. 30, 2018

    Published Online: Jul. 30, 2019

    The Author Email: Li Liangfu (longford@xjtu.edu.cn), Sun Ruiyun (984789463@qq.com)

    DOI:10.3788/LOP56.061002

    Topics