Opto-Electronic Engineering, Volume. 50, Issue 6, 230017(2023)

Sonar image denoising method based on residual and attention network

Dongdong Zhao1, Yifei Ye1, Peng Chen1、*, Ronghua Liang1, Tiancheng Cai1, and Xinxin Guo2
Author Affiliations
  • 1College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 330063, China
  • 2Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
  • show less
    Figures & Tables(11)
    DIRANet overall structure diagram
    DCA (dual channel attention) mudule
    DIR (dense in residual) structure
    Simulated forward-looking sonar images. (a) Original image; (b) Noisy image
    Simulated forward-looking sonar image denoising results. (a) (b) (c) Represents three different images
    Real forward-looking sonar image denoising results. (a) (b) (c) Represents three different images
    • Table 1. simulated sonar image denoising results

      View table
      View in Article

      Table 1. simulated sonar image denoising results

      方法PSNRSSIMBrisque
      BM3D[10]29.840.7693104.18
      DnCNN[13]34.250.816895.27
      CBDNet[27]34.660.785298.82
      CNCL[36]34.540.781794.68
      DeamNet[37]35.570.775195.70
      本文36.540.845091.13
    • Table 2. Real sonar image denoising evaluation index results

      View table
      View in Article

      Table 2. Real sonar image denoising evaluation index results

      方法Brisque
      BM3D[10]53.81
      DnCNN[13]43.57
      CBDNet[27]42.58
      CNCL[36]45.27
      DeamNet[37]47.21
      本文40.28
    • Table 3. Comparison of different attention mechanisms

      View table
      View in Article

      Table 3. Comparison of different attention mechanisms

      模型模拟数据集真实数据集
      PSNRSSIMBrisqueBrisque
      单路注意力35.680.827694.1941.61
      DCA36.540.845091.1340.28
    • Table 4. Comparison of different residual block

      View table
      View in Article

      Table 4. Comparison of different residual block

      模型模拟数据集真实数据集
      PSNRSSIMBrisqueBrisque
      普通残差块35.980.836795.2641.34
      DIR36.540.845091.1340.28
    • Table 5. Comparison of ablation results

      View table
      View in Article

      Table 5. Comparison of ablation results

      方法模拟数据集真实数据集
      PSNRSSIMBrisqueBrisque
      CBDNet34.660.785298.8242.58
      CBDNet+DCA35.870.796197.4841.89
      CBDNet+DIR35.430.825798.3142.04
      CNCL34.540.781794.6845.27
      CNCL+DCA34.840.774694.4244.35
      CNCL+DIR35.020.799392.8843.79
      本文36.540.845091.1340.28
    Tools

    Get Citation

    Copy Citation Text

    Dongdong Zhao, Yifei Ye, Peng Chen, Ronghua Liang, Tiancheng Cai, Xinxin Guo. Sonar image denoising method based on residual and attention network[J]. Opto-Electronic Engineering, 2023, 50(6): 230017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jan. 20, 2023

    Accepted: Apr. 11, 2023

    Published Online: Aug. 9, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230017

    Topics