Chinese Journal of Quantum Electronics, Volume. 40, Issue 4, 546(2023)
Parameter prediction of classical
[1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C], 175-179(1984).
[2] Ekert A K. Quantum cryptography based on Bell's theorem[J]. Physical Review Letters, 67, 661-663(1991).
[3] Gisin N, Ribordy G, Tittel W et al. Quantum cryptography[J]. Reviews of Modern Physics, 74, 145-195(2002).
[4] Chen Y A, Zhang Q, Chen T Y et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres[J]. Nature, 589, 214-219(2021).
[5] Li Y, Liao S K, Cao Y et al. Space-ground QKD network based on a compact payload and medium-inclination orbit[J]. Optica, 9, 933-938(2022).
[6] Wang S, Yin Z Q, He D Y et al. Twin-field quantum key distribution over 830-km fibre[J]. Nature Photonics, 16, 154-161(2022).
[7] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing[J]. Electronics Letters, 33, 188-190(1997).
[8] Runser R J, Chapuran T E, Toliver P et al. Demonstration of 1.3 µm quantum key distribution (QKD) compatibility with1.5 µm metropolitan wavelength division multiplexed (WDM) systems[C](2005).
[9] Nweke N I, Toliver P, Runser R J et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels[J]. Applied Physics Letters, 87, 174103(2005).
[10] Chapuran T E, Toliver P, Peters N A et al. Optical networking for quantum key distribution and quantum communications[J]. New Journal of Physics, 11, 105001(2009).
[11] Li J H, Shi L, Zhang Q F et al. Noise analysis and performance optimization of experiments in classical-quantum signals co-channel transmission[J]. Chinese Journal of Quantum Electronics, 38, 365-373(2021).
[12] Wang Y S, Li Y X, Shi L et al. Scheme of multiplexed classical and quantum transmission system with heralded single-photon source[J]. Chinese Journal of Quantum Electronics, 32, 445-451(2015).
[13] Cheng K, Zhou Y Y, Wang H. Performance analysis of classical-quantum signals simultaneous transmission sharing a same fiber schemes[J]. Chinese Journal of Quantum Electronics, 36, 336-341(2019).
[14] Peters N A, Toliver P, Chapuran T E et al. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments[J]. New Journal of Physics, 11, 045012(2009).
[15] Choi I, Young R J, Townsend P D. Quantum key distribution on a 10 Gb/s WDM-PON[J]. Optics Express, 18, 9600-9612(2010).
[16] Mora J, Amaya W, Ruiz-Alba A et al. Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON[J]. Optics Express, 20, 16358-16365(2012).
[17] Wang L J, Chen L K, Ju L et al. Experimental multiplexing of quantum key distribution with classical optical communication[J]. Applied Physics Letters, 106, 081108(2015).
[18] Wang B X, Mao Y Q, Shen L et al. Long-distance transmission of quantum key distribution coexisting with classical optical communication over a weakly-coupled few-mode fiber[J]. Optics Express, 28, 12558-12565(2020).
[19] Yoshino K I, Fujiwara M, Tanaka A et al. High-speed wavelength-division multiplexing quantum key distribution system[J]. Optics Letters, 37, 223-225(2012).
[20] Ferreira da Silva T, Xavier G B, Temporão G P et al. Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems[J]. Journal of Lightwave Technology, 32, 2332-2339(2014).
[21] Patel K A, Dynes J F, Lucamarini M et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Applied Physics Letters, 104, 051123(2014).
[22] Sun Y M, Lu Y S, Niu J N et al. Reduction of FWM noise in WDM-based QKD systems using interleaved and unequally spaced channels[J]. Chinese Optics Letters, 14, 060602(2016).
[23] Niu J N, Sun Y M, Cai C et al. Optimized channel allocation scheme for jointly reducing four-wave mixing and Raman scattering in the DWDM-QKD system[J]. Applied Optics, 57, 7987-7996(2018).
[24] Patel K A, Dynes J F, Choi I et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber[J]. Physical Review X, 2, 041010(2012).
[25] Dynes J F, Tam W W S, Plews A et al. Ultra-high bandwidth quantum secured data transmission[J]. Scientific Reports, 6, 35149(2016).
[26] Wang L J, Zou K H, Sun W et al. Long distance co-propagation of quantum key distribution and terabit classical optical data channels[J]. Physical Review A, 95, 012301(2017).
[27] Eriksson T A, Hirano T, Puttnam B J et al. Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels[J]. Communications Physics, 2, 9(2019).
[28] Geng J Q, Fan-Yuan G J, Wang S et al. Coexistence of quantum key distribution and optical transport network based on standard single-mode fiber at high launch power[J]. Optics Letters, 46, 2573-2576(2021).
[29] Geng J Q, Fan-Yuan G J, Wang S et al. Quantum key distribution integrating with ultra-high-power classical optical communications based on ultra-low-loss fiber[J]. Optics Letters, 46, 6099-6102(2021).
[30] Geng J Q, Fan-Yuan G J, Li K J et al. Integration in the C-band between quantum key distribution and the classical channel of 25 dBm launch power over multicore fiber media[J]. Optics Letters, 47, 3111-3114(2022).
[31] Liu W Q, Huang P, Peng J Y et al. Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution[J]. Physical Review A, 97, 022316(2018).
[32] Lu F Y, Yin Z Q, Wang C et al. Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network[J]. Journal of the Optical Society of America B, 36, B92-B98(2019).
[33] Wang W Y, Lo H K. Machine learning for optimal parameter prediction in quantum key distribution[J]. Physical Review A, 100, 062334(2019).
[34] Ding H J, Liu J Y, Zhang C M et al. Predicting optimal parameters with random forest for quantum key distribution[J]. Quantum Information Processing, 19, 60(2020).
[35] Niu J N, Sun Y M, Jia X L et al. Key-size-driven wavelength resource sharing scheme for QKD and the time-varying data services[J]. Journal of Lightwave Technology, 39, 2661-2672(2021).
[36] Zhao L Y, Wu Q J, Qiu H K et al. Practical security of wavelength-multiplexed decoy-state quantum key distribution[J]. Physical Review A, 103, 022429(2021).
[37] Ma X F, Qi B, Zhao Y et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 72, 012326(2005).
Get Citation
Copy Citation Text
Yishi SUN, Yi SUN. Parameter prediction of classical
Category:
Received: Oct. 9, 2022
Accepted: --
Published Online: Aug. 22, 2023
The Author Email: SUN Yi (sunyi@xust.edu.cn)