Study On Optical Communications, Volume. 46, Issue 3, 33(2020)

Research Progress in Neural Network Inverse Design of Nanophotonic Device

LI Shi-yu1,*... CHEN Shu-wen1, JIANG Bin1, ZHANG Zhan-tian1, YANG Yu-gang1, HE You-Chen1, ZHU Hua-tao1, ZHANG Qian1 and YU Man2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(31)

    [1] [1] Piggott A Y, Lu J, Lagoudakis K G, et al. Inverse Design and Demonstration of a Compact and Broadband On-Chip Wavelength Demultiplexer[J]. Nature Photonics, 2015, 9(6):374-377.

    [2] [2] Molesky S,Lin Z,Piggott A Y,et al.Inverse Design in Nanophotonics[J].Nature Photonics,2018,12(11):659-670.

    [5] [5] Roy L J. Evolving Better Nanoparticles: Genetic Algorithms for Optimising Cluster Geometries[J]. Dalton Transactions,2003,22:4193-4207.

    [6] [6] Nathan S F,Graeme H.Optimizing Core-shell Nanoparticle Catalysts with a Genetic Algorithm[J]. Chemical Physics,2009,131(23):234103.

    [7] [7] Michael B G,Niles A P. An Introduction to the Adjoint Approach to Design[J]. Flow, Turbulence and Combustion,2000, 65(3):393-415.

    [8] [8] Imanol A,Isidro C,Angel J G.Inverse Design and Topology Optimization of Novel Photonic Crystal Broadband Passive Devices for Photonic Integrated Circuits[J].Applied Physics A,2014,115(2):433-438.

    [9] [9] Jakobs J,Ole S.Topology Optimization for Nano-photonics[J].Laser & Photonics Review, 2011,5(2):308-321.

    [10] [10] Ole S, Jakob S J,Lars H F.On Nanostructured Silicon Success[J]. Nature Photonics, 2016, 10(3):142-143.

    [11] [11] LeCun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2015, 521(7553):436-444.

    [12] [12] Krizhevsky A, Sutskever I,Hinton G E. Imagenet Classification with Deep Convolutional Neural Networks[J].Communications of the ACM,2017, 60(6):84-90.

    [13] [13] Ghaboussi J, Garrett J J, Wu X. Knowledge-based Modeling of Material Behavior with Neural Networks[J]. Engineering Mechanics,1991,117 (1):132-153.

    [14] [14] Baldi P, Sadowski P,Whiteson D. Searching for Exotic Particles in High-energy Physics with Deep Learning[J]. Nature Communication,2014, 5(5):4308.

    [15] [15] Radovic A,Williams M,Rousseau D,et al. Machine Learning at the Energy and Intensity Frontiers of Particle Physics[J]. Nature,2018,560:41-48.

    [16] [16] Jun Y,Eo T,Kim T, et al.Deep-learned 3d Black-blood Imaging Using Automatic Labelling Technique and 3d Convolutional Neural Networks for Detecting Metastatic Brain Tumors [J].Scientific Reports,2018,8:9450.

    [17] [17] Kojima K, Wang B, Kamilov U, et al. Acceleration of FDTD-based Inverse Design Using a Neural Network Approach[C]//In Integrated Photonics Research,Silicon and Nanophotonics 2017. New Orleans,USA:Advanced Photonics,2017:ITu1A. 4.

    [18] [18] Zhang T, Jia W, Qi L, et al. Efficient Spectrum Prediction and Inverse Design for Plasmonic Waveguide Systems based on Artificial Neural Networks[J].Photonics Research,2019,7(3):368-380.

    [19] [19] Malkiel I,Mrejen M,Nagler A,et al.Plasmonic Nanostructure Design and Characterization via Deep Learning[J].Light: Science & Applications,2018,7(1):60.

    [20] [20] Kang Z, Zhang X, Yuan J, et al. Resolution-enhanced All-optical Analog-to-digital Converter Employing Cascade Optical Quantization Operation[J]. Optics Express, 2014, 22(18):21441-21453.

    [21] [21] Tian Y,Qiu J,Yu M,et al.Broadband 1 × 3 Couplers with Variable Splitting Ratio Using Cascaded Step-Size MMI[J].IEEE Photonics Journal,2018,10(3):1-8.

    [22] [22] Xu K,Liu L,Xiang W.Integrated Photonic Power Divider with Arbitrary Power Ratios [J].Optics Letter,2017,42:855-858.

    [23] [23] Tahersima M H,Kojima K,Koike-Akino T,et al.Deep Neural Network Inverse Design of Integrated Nanophotonic Devices[J].Scientific Reports,2018,9:1-9.

    [24] [24] Peurifoy J,Shen Y,Jing L,et al.Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks[J].Science Advances,American Association for the Advancement of Science,2018,4(6):1-7.

    [25] [25] An S, Fowler C, Zheng B, et al. A Novel Modeling Approach for All-Dielectric Metasurfaces Using Deep Neural Networks[J]. arXiv preprint arXiv,2019,1906:03387.

    [26] [26] Ma W, Cheng F, Liu Y. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials[J]. ACS Nano, 2018, 12(6):6326-6334.

    [27] [27] Liu Z,Zhu D,Rodrigues S,et al.Generative Model for the Inverse Design of Metasurfaces[J]. Nano Letters,2018,18(10):6570-6576.

    [28] [28] Pilozzi L,Farrelly F A, Marcucci G, et al. Machine Learning Inverse Problem for Topological Photonics[J]. Communications Physics, 2018, 1(1):821.

    [29] [29] Barth C, Becker C. Machine Learning Classification for Field Distributions of Photonic Modes[J]. Communications Physics, 2018,1(1):1-11.

    [30] [30] Sun Y, Xia Z, Kamilov U S. Efficient and Accurate Inversion of Multiple Scattering with Deep Learning.Optics[J].Express,2018,26:14678-14688.

    [31] [31] Asano T,Noda S.Optimization of Photonic Crystal Nanocavities based on Deep Learning[J]. Optics Express,2018,26(25):32704-32717.

    [32] [32] Alec M H,Ryan M C.Designing Integrated Photonic Devices Using Artificial Neural Networks[J]. Optics Express,2019,27(21):29620-29638.

    [33] [33] Barth C, Becker C. Machine Learning Classification for Field Distributions of Photonic Modes[J]. Communications Physics, 2018, 1(1):1-11.

    Tools

    Get Citation

    Copy Citation Text

    LI Shi-yu, CHEN Shu-wen, JIANG Bin, ZHANG Zhan-tian, YANG Yu-gang, HE You-Chen, ZHU Hua-tao, ZHANG Qian, YU Man. Research Progress in Neural Network Inverse Design of Nanophotonic Device[J]. Study On Optical Communications, 2020, 46(3): 33

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 19, 2019

    Accepted: --

    Published Online: Jan. 19, 2021

    The Author Email: Shi-yu LI (79187106@qq.com)

    DOI:10.13756/j.gtxyj.2020.03.007

    Topics