Infrared and Laser Engineering, Volume. 48, Issue 2, 221002(2019)

Simulation of InP/In0.53Ga0.47As/InP infrared photocathode with high quantum yield

Zhou Zhenhui1,2,3、*, Xu Xiangyan1,3, Liu Hulin1,3, Li Yan4, Lu Yu1,3, Qian Sen5,6, Wei Yonglin1,3, He Kai1,3, Sai Xiaofeng1,3, Tian Jinshou1,3, and Chen Ping1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • 6[in Chinese]
  • show less
    References(23)

    [1] [1] Yang M Z, Jin M C, Chang B K. Spectral response of InGaAs photocathodes with different emission layers [J]. Applied Optics, 2016, 55(31): 8732-8737.

    [2] [2] Jin M C, Chen X L, Hao G H, et al. Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer [J]. Applied Optics, 2015, 54(28): 8332-8338.

    [3] [3] Matsuyama T, Mukai M, Horinaka H, et al. High luminescence polarization of InGaAs-AlGaAs strained layer superlattice fabricated as a photocathode of spin-polarized electron source [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001, 40(11): 6468-6472.

    [4] [4] Yang M Z, Jin M C. Photoemission of reflection-mode InGaAs photocathodes after Cs,O activation and recaesiations [J]. Optical Materials, 2016, 62: 499-504.

    [5] [5] Smirnov K , Medzakovskiy V I, Davydov V V, et al. High sensitive InP emitter for InP/InGaAs heterostructures[J]. Journal of Physics: Conference Series, 2017, 917(6): 062019.

    [6] [6] Sachno V, Dolgyh A, Loctionov V. Image intensifier tube (I2) with 1.06-μm InGaAs-photocathode[C]//SPIE, 2005, 5834: 169-176.

    [7] [7] Escher J S, Gregory P E, Hyder S B, et al. Transferred-electron photoemission to 1.65 μm from InGaAs [J]. Journal of Applied Physics, 1978, 49(4): 2591-2592.

    [8] [8] Li Jinmin, Guo Lihui, Hou Xun. Theoretical calculation of quantum efficiency for field-assisted InP/InGaAsP semiconductor photocathodes [J]. Acta Physica Sinica, 1992, 41(10): 1672-1678. (in Chinese)

    [9] [9] Jin M C, Chang B K, Cheng H C, et al. Research on quantum efficiency of transmission-mode InGaAs photocathode [J]. Optik, 2014, 125(10): 2395-2399.

    [10] [10] Li Jinmin, Guo Lihui, Hou Xun. Calculation of time response for field-assisted InP/InGaAsP/InP semiconductor photocathodes [J]. Chinese Science Bulletin, 1992, 37(7): 598-601. (in Chinese)

    [11] [11] Sun Qiaoxia, Xu Xiangyan, An Yingbo, et al. Numerical study on time response characteristics of InP/InGaAs/InP infrared photocathode [J]. Infrared and Laser Engineering, 2013, 42(12): 3163-3167. (in Chinese)

    [12] [12] Zou Jijun, Chang Benkang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes [J]. Acta Physica Sinica, 2007, 56(5): 2992-2997.

    [13] [13] Escher J S, Gregory P E, Maloney T J. Hot-electron attenuation length in Ag/InP Schottky barriers[J]. Journal of Vacuum Science and Technology, 1979, 16(5): 1394-1397.

    [14] [14] Su C Y, Spicer W E, Lindau I. Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs (110) surfaces [J]. Journal of Applied Physics, 1983, 54(3): 1413-1422.

    [15] [15] Levinshtein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters[M]. 2nd ed. London: World Scientific, 1999: 62-88.

    [16] [16] Simon S M. Physics of Semiconductor Devices[M]. New York: Wiley, 1980.

    [17] [17] Levinshtein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters[M]. 1st ed. London: World Scientific, 1999.

    [18] [18] Jiao Gangcheng, Xu Xiaobing, Zhang Liandong, et al. InGaAs/InP photocathode grown by solid-source MBE [C]//SPIE, 2013, 8912: 891216.

    [19] [19] Chinen Kouyu, Minoru Niigaki, Masahiro Miyao, et al. GaAs transmission photocathode grown by MBE[J]. Japanese Journal of Applied Physics, 1980, 19(11): 703-706.

    [20] [20] Narayanan A A, Fisher D G. Negative electron affinity gallium arsenide photocathode grown by MBE[J]. Appl Phys, 1984, 56(6): 1886-1887.

    [21] [21] Bourree L E, Chasse D R, Thamban P L, et al. MBE grown InGaAs photocathodes[C]//SPIE, 2003, 4796: 1-10.

    [22] [22] Jin M C, Chang B K, Guo J, et al. Theoretical study on electronic and optical properties of Zn-doped In0.25Ga0.75As photocathodes[J]. Optical Review, 2016, 23(1): 84-91.

    [23] [23] Guo Jing, Chang Benkang, Wang Honggang, et al. Near-infrared photocathode In0.53Ga0.47As doped with zinc: A first principle study[J]. Optik, 2016, 127(3): 1268-1271.

    Tools

    Get Citation

    Copy Citation Text

    Zhou Zhenhui, Xu Xiangyan, Liu Hulin, Li Yan, Lu Yu, Qian Sen, Wei Yonglin, He Kai, Sai Xiaofeng, Tian Jinshou, Chen Ping. Simulation of InP/In0.53Ga0.47As/InP infrared photocathode with high quantum yield[J]. Infrared and Laser Engineering, 2019, 48(2): 221002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 先进光学材料

    Received: Sep. 5, 2018

    Accepted: Oct. 3, 2018

    Published Online: Apr. 5, 2019

    The Author Email: Zhenhui Zhou (zhouzhenhui2015@opt.cn)

    DOI:10.3788/irla201948.0221002

    Topics