Journal of the Chinese Ceramic Society, Volume. 50, Issue 10, 2722(2022)

Development on Recycling Rare Metal Lithium from Waste Lithium-Ion Batteries

HAN Jilong1,*... WANG Kuihu1, ZHOU Lilong1, LI Zhengjie1, ZHANG Hanya1, MENG Qingfen2 and YUN Jimmy3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(60)

    [1] [1] YOSHINO A. Development of the lithium-ion battery and recent technological trends[J]. Lithium-Ion Batteries. 2014, 1: 1-20.

    [2] [2] HAWKINS T R, GAUSEN O M, STREMMAN A H. Environmental impacts of hybrid and electric vehicles-a review[J]. Int J Life Cycle ASS, 2012, 17(8): 997-1014.

    [3] [3] ZHOU L F, YANG D, DU T, et al. The current process for the recycling of spent lithium-ion batteries[J]. Front Chem, 2020, 8(3): 578044.

    [4] [4] HAMMOND G P, HAZELDINE T. Indicative energy technology assessment of advanced rechargeable batteries[J]. Appl Energ, 2015, 138(15): 559-571.

    [7] [7] REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials, 2020, 13(8): 1884-1893.

    [8] [8] JI Y, JAFVERT C T, ZHAO F. Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds[J]. Resour Conserv Recy, 2021, 170(72): 105551.

    [9] [9] KIM S, BANG J, YOO J, et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. J Clean Prod, 2021, 294(524): 126329.

    [11] [11] LIU Y T, ZHANG R H, WANG J, et al. Current and future lithium-ion battery manufacturing[J]. iScience, 2021, 24(4): 102332.

    [12] [12] LIU C W, LIN J, CAO H B, et al. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review[J]. J Cleaner Prod. 2019, 228(1): 801-813.

    [13] [13] ZENG X L, LI J H, SINGH N. Recycling of spent lithium-ion battery: A Critical Review[J]. Crit Rev Env Sci Tec, 2014, 44(10): 1129-1165.

    [14] [14] GALUSHKIN N E, YAZVINSKAYA N N, GALUSHKIN D N. A critical study of using the peukert equation and its generalizations for determining the remaining capacity of lithium-ion batteries[J]. Appl Sci, 2020, 10(16): 5518.

    [15] [15] WANG F, ZHANG T, HE Y Q, et al. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment[J]. J Clean Prod, 2018, 185: 646-652.

    [16] [16] LIU K, LIU L L, TAN Q Y, et al. Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation[J]. Green Chem, 2021, 23(3): 1344-1352.

    [17] [17] OJANEN S, LUNDSTROM M, SANTASALO-AARNIO A, et al. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling[J]. Waste Manage, 2018, 76: 242-249.

    [18] [18] NIE H H, XU L, SONG D W, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chem, 2015, 17(2): 1276-1280.

    [19] [19] ASSEFI M, MAROUFI S, YAMAUCHI Y, et al. Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: A minireview[J]. Curr Opin Green Sust Chem, 2020, 24: 26-31.

    [20] [20] OR T, GOURLEY S W D, KALIYAPPAN K, et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook[J]. Carbon Energy, 2020, 2(1): 6-43.

    [21] [21] FOUAD O A, FARGHALY F I, BAHGAT M. A novel approach for synthesis of nanocrystalline γ-LiAlO2 from spent lithium-ion batteries[J]. J Anal Appl Pyrol, 2007, 78(1): 65-69.

    [22] [22] LI J, WANG G X, XU Z M. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. J Hazard Mater, 2016, 302: 97-104.

    [23] [23] XIAO J F, LI J, XU Z M. Novel approach for in situ recovery of lithium carbonate from spent lithium-ion batteries using vacuum metallurgy[J]. Environ Sci Technol, 2017, 51(20): 11960-11966.

    [24] [24] WINDISCH-KERN S, HOLZER A, PONAK C, et al. Pyrometallurgical lithium-ion-battery recycling: Approach to limiting lithium slagging with the induRed reactor concept[J]. Processes, 2021, 9(1): 84.

    [27] [27] MAO J K, LI J, XU Z M. Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries[J]. J Clean Prod, 2018, 205: 923-929.

    [29] [29] ZENG X L, LI J H, SHEN B Y. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. J Hazard Mater, 2015, 295: 112-118.

    [30] [30] PINNA E G, RUIZ M C, OJEDA M W, et al. Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors[J]. Hydrometall, 2016, 167: 66-71.

    [31] [31] YANG Y, HUANG G Y, XIE M, et al. Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps[J]. Hydrometall, 2016, 165(Part 2): 358-369.

    [32] [32] NAN J M, HAN D M, ZUO X X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. J Power Sources, 2005, 152: 278-284.

    [33] [33] ZHU S G, HE W Z, LI G M, et al. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation[J]. T Nonferr Metal So C, 2012, 22(9): 2274-2281.

    [34] [34] JHA M K, KUMARI A, JHA A K, et al. Recovery of lithium and cobalt from waste lithium-ion batteries of mobile phone[J]. Waste Manage, 2013, 33(9):1890-1897.

    [35] [35] PRANOLO Y, ZHANG W, CHENG C Y. Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system[J]. Hydrometall, 2010, 102(1-4): 37-42.

    [36] [36] WAENGWANN P, EKASNGSRI T. Recovery of Lithium from Simulated Secondary Resources (Li2CO3) through Solvent Extraction[J]. Sustainability, 2020, 12(17): 7179.

    [37] [37] ZHANG L C, LI L J, RUI H M, et al. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction [J]. J Hazard Mater, 2020, 398: 122840.

    [38] [38] SONG Y F, HE L H, ZHAO Z W, et al. Separation and recovery of lithium from Li3PO4 leaching liquor using solvent extraction with saponified D2EHPA[J]. Sep Purif Technol, 2019, 229: 115823.

    [40] [40] YANG Y, XU S M, HE Y H. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes[J]. Waste Manage, 2017, 64: 219-227.

    [41] [41] LI L, FAN E S, GUAN Y B, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. Acs Sustain Chem Eng, 2017, 5(6): 77-86.

    [42] [42] ESMAEILI M, RASTEGAR S O, BEIGZADEH R, et al. Ultrasound-assisted leaching of spent lithium-ion batteries by natural organic acids and H2O2[J]. Chemosphere, 2020, 254: 126670.

    [43] [43] WATLING H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review[J]. Hydrometall, 2006, 84(1/2): 81-108.

    [44] [44] HARTONO M, ASTRAYUDHA M A, PETRUS H, et al. Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism[J]. Rasayan J Chem, 2017, 10(3): 897-903.

    [45] [45] REN W X, LI P J, Geng Y, et al. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger[J]. J Hazard Mater, 2009, 167(1-3): 164-169.

    [47] [47] HOREH N B, MOUSAVI S M, SHOJAOSADATI S A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger[J]. J Power Sour, 2016, 320: 257-266.

    [48] [48] DOLKER T, PANT D. Chemical-biological hybrid systems for the metal recovery from waste lithium-ion battery[J]. J Environ Manage, 2019, 248: 109270.

    [49] [49] HARTONO M, ASTRAYUDHA M A, PETRUS H, et al. Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism[J]. Rasay J Chem, 2017, 10(3): 897-903.

    [50] [50] BRAR K K, MAGDOULI S, ETTEIEB S, et al. Integrated bioleaching-electrometallurgy for copper recovery-a critical review[J]. J Clean Prod, 2021, 291: 125257.

    [51] [51] LV H, HUANG H J, HUANG C, et al. Electric field driven de-lithiation: A strategy towards comprehensive and efficient recycling of electrode materials from spent lithium-ion batteries[J]. Appl Catal B, 2021, 283: 119634.

    [52] [52] LEE J, YU S H, KIM C, et al. Highly selective lithium recovery from brine using a λ-MnO2-Ag battery[J]. Phys Chem Chem Phys, 2013, 15(20): 7690.

    [53] [53] JANG Y J, HOU C H, PARK S, et al. Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes[J]. Resour Conserv Recy, 2021, 175(3): 105837.

    [54] [54] ZHANG B L, QU X, QU J K, et al. A paired electrolysis approach for recycling spent lithium iron phosphate batteries in an undivided molten salt cell[J]. Green Chem, 2020, 22(24): 8633-8641.

    [57] [57] WU H H, LIN Y K, FENG W Y, et al. A novel nanofiltration membrane with [MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. J Mem Sci, 2020, 603:117997.

    [58] [58] IIZUKA A, YAMASHITA Y, NAGASAWA H, et al. Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation[J]. Sep Purif Technol, 2013, 113: 33-41.

    [59] [59] XING L X, SONG J F, LI Z S, et al. Solvent stable nanoporous poly (ethylene-co-vinyl alcohol) barrier membranes for liquid-liquid extraction of lithium from a salt lake brine[J]. J Mem Sci, 2016, 520: 596-606.

    [60] [60] CUI L, JIANG K, WANG J F, et al. Role of ionic liquids in the efficient transfer of lithium by cyanex 923 in solvent extraction system[J]. AIChE J. 2019, 65(15): 16606.

    [61] [61] SONG J F, LI X M, ZHANG Y Y, et al. Hydrophilic nanoporous ion-exchange membranes as a stabilizing barrier for liquid-liquid membrane extraction of lithium ions[J]. J Mem Sci, 2014, 471: 372-380.

    [62] [62] GUYOT E, SEGHIR S, DILIBERTO S, et al. Lithium recovery by electrochemical transfer junction based on intercalation host matrix[J]. Electrochem Commun, 2012, 23(1): 29-32.

    [63] [63] OUNISSI T , DAMMAK L , LARCHET C , et al. Novel lithium selective composite membranes: synthesis, characterization and validation tests in dialysis[J]. J Mater Sci, 2020, 55(34): 1-18.

    [64] [64] SAFFIRIO S, FALCO M, APPETECCHI G B, et al. Li1.4Al0.4Ge0.4Ti1.4(PO4)3 promising NASICON-structured glass- ceramic electrolyte for all-solid-state Li-based batteries: Unravelling the effect of diboron trioxide[J]. J Eur Ceram Soc, 2022, 42(3): 1023-1032.

    [65] [65] HOGREFE K, MINAFRA N, ZEIER W G, et al. Tracking ions the direct way: Long-range Li+ dynamics in the thio-lisicon family Li4MCh4 (M=Sn, Ge; Ch=S, Se) as probed by 7Li NMR relaxometry and 7Li spin-alignment echo NMR[J]. J Phys Chem C, 2021, 125(4): 2306-2317.

    [66] [66] ZHAO G W, SUZUKI K, HIRAYAMA M, et al. Syntheses and characterization of novel perovskite-type LaScO3-based lithium ionic conductors[J]. Molecules, 2021, 26(2): 299.

    [67] [67] OHNO T, PADARTI J K, HAYASHI Y, et al. Molecular design effects of alkoxide-derived precursor solution on low-temperature crystallization of cubic garnet type Li ion conductor[J]. Mater Lett, 2021, 283(6):128747.

    [68] [68] SASAKI K, HIRAKA R, TAKAHASHI H, et al. Energy balance of lithium recovery by electrodialysis using La0.57Li0.29TiO3 electrolyte[J]. Fusion Eng Des, 2021, 170: 112500.

    [69] [69] LU X J, WANG R, ZHANG F, et al. The influence of phosphorous source on the properties of NASICON lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)3[J]. Solid State Ionics, 2020, 354: 115417.

    [70] [70] PFALZGRAF D, MUTTER D, URBAN D F. Atomistic analysis of Li migration in Li1+xAlxTi2-x(PO4)3 (LATP) solid electrolytes[J]. Solid State Ionics, 2021, 359: 115521.

    Tools

    Get Citation

    Copy Citation Text

    HAN Jilong, WANG Kuihu, ZHOU Lilong, LI Zhengjie, ZHANG Hanya, MENG Qingfen, YUN Jimmy. Development on Recycling Rare Metal Lithium from Waste Lithium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2722

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 23, 2022

    Accepted: --

    Published Online: Jan. 22, 2023

    The Author Email: Jilong HAN (hanjilong@hebust.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220209

    Topics