Spectroscopy and Spectral Analysis, Volume. 42, Issue 9, 2848(2022)

Hyperspectral Visualization of Citrus Leaf Moisture Content Based on CARS-CNN

Figures & Tables(10)
Spectra of leaves with different moisture content
Spectra after different pretreatments(a): Raw spectra; (b): Pretreated by SNV; (c): Pretreated by MSC; (d): Pretreated by SG
CARS feature bands selection
CNN model structure diagram
Regression curves of different models(a): Raw spectra+CARS+CNN; (b): Raw spectra+CARS+PLSR; (c): SNV+PCA+RF; (d): SNV+PCA+SVR
Distribution maps of different moisture contents
  • Table 1. Distribution statistics of water content in citrus leaves(%)

    View table
    View in Article

    Table 1. Distribution statistics of water content in citrus leaves(%)

    样本量最小值最大值平均值方差
    50019.5983.0562.220.93
  • Table 2. CNN model parameter setting

    View table
    View in Article

    Table 2. CNN model parameter setting

    网络层模型参数
    输入层全波段为256×1, CARS筛选后为29×1, PCA提取后为10×1
    卷积层C1卷积核大小为1×3×16, 步长为1
    最大池化层S1最大池化, 步长为1, 经过特征选择大小设置为1×1, 全波段大小设置为1×2
    卷积层C2卷积核大小为1×3×32, 步长为1
    最大池化层S2最大池化, 步长为1, 经过特征选择大小设置为1×1, 全波段大小设置为1×2
    卷积层C3卷积核大小为1×3×64, 步长为1
    最大池化层S3最大池化, 步长为1, 经过特征选择大小设置为1×1, 全波段大小设置为1×2
    全连接层F532个神经元
    输出层1个神经元, 输出柑橘叶片含水量预测值
  • Table 3. Forecast results of different models

    View table
    View in Article

    Table 3. Forecast results of different models

    模型选择特征
    波段
    数据预
    处理
    训练集测试集
    Rc2RMSERp2RMSE
    CNN全波段原始数据0.934 30.024 90.915 90.028 6
    SNV0.998 60.003 50.876 10.034 0
    MSC0.964 80.017 50.866 20.037 7
    SG0.245 30.084 30.202 50.085 8
    PCA原始数据0.997 80.004 30.699 10.055 7
    SNV0.997 50.004 30.696 90.063 0
    MSC0.999 40.002 30.726 30.044 3
    SG0.999 70.001 40.169 60.104 7
    CARS原始数据0.967 90.016 30.947 00.021 4
    SNV0.998 10.004 20.891 50.032 3
    MSC0.985 50.011 30.895 40.032 5
    SG0.238 30.088 10.172 10.077 7
  • Table 4. Comparison of prediction results of different models

    View table
    View in Article

    Table 4. Comparison of prediction results of different models

    模型训练集测试集
    Rc2RMSECRp2RMSEC
    原始数据+CARS+PLSR0.879 40.033 90.858 10.034 7
    SNV+PCA+RF0.947 80.022 30.746 20.040 9
    SNV+PCA+SVR0.643 60.055 30.612 60.065 7
    原始数据+CARS+CNN0.967 90.016 30.947 00.021 4
    原始数据+全波段+CNN0.934 30.024 90.915 90.028 6
Tools

Get Citation

Copy Citation Text

. Hyperspectral Visualization of Citrus Leaf Moisture Content Based on CARS-CNN[J]. Spectroscopy and Spectral Analysis, 2022, 42(9): 2848

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Jul. 28, 2021

Accepted: Oct. 26, 2021

Published Online: Nov. 17, 2022

The Author Email:

DOI:10.3964/j.issn.1000-0593(2022)09-2848-07

Topics