Journal of the Chinese Ceramic Society, Volume. 50, Issue 10, 2579(2022)
Cl-Doping Lithium-Rich Cathode Material Li1.2Ni0.13Co0.13Mn0.54O2 for Regulating Lattice Oxygen Reactivity and Electrochemical Performance
[1] [1] MANTHIRAN A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives[J]. Adv Energy Mater, 2016, 6(1): 1501010.
[3] [3] WEI H, WEI B, HUA L, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Adv Mater, 2021, 33(50): 2005937.
[4] [4] LIN Z, LUO D, DING X, et al. Accurate control of initial coulombic efficiency for Li-rich Mn-based layered oxides by surface multicomponent integration[J]. Angew Chem Int Ed, 2020, 59(51): 23061-23066.
[5] [5] DING Z, ZHANG C, XU S, et al. Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage[J]. Energy Stor Mater, 2019, 21: 69-76.
[6] [6] YAN P F, ZENG J M, TANG Z K, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nat Nanotechnol, 2019, 14: 602-608.
[7] [7] ZHENG J, XU P, GU M, et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material[J]. Chem Mater, 2015, 27(4): 1381-1390.
[8] [8] ZHAO S, GUO Z, YAN K, et al. Towards high-energy-density lithium-ion batteries: strategies for developing high-capacity lithium-rich cathode materials[J]. Energy Stor Mater, 2020, 34: 716-734.
[9] [9] HOUSE, ROBERT A, et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox[J]. Energy Environ Sci, 2018, 11(4): 926-932.
[10] [10] AN J, SHI L, CHEN G, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. J Mater Chem A, 2017, 5: 19738-19744.
[11] [11] KATAOKA R, TAGUCHI N, KOJIMA T, et al. Improving the oxygen redox stability of NaCl-type cation disordered Li2MnO3 in a composite structure of Li2MnO3 and spinel-type LiMn2O4[J]. J Mater Chem A, 2019, 7: 5381-5390.
[14] [14] WANG M, HAN Y, CHU M, et al. Enhanced electrochemical performances of cerium-doped Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials[J]. J Alloys Compounds, 2020, 861: 158000.
[18] [18] LUN Z, OUYANG B, KITCHAEY D, et al. Improved cycling performance of Li excess cation disordered cathode materials upon fluorine substitution[J]. Adv Energy Mater, 2018, 9(2): 1802959.
[19] [19] RICHARDS W, DACEK S, KITCHAEY D A, et al. Fluorination of lithium-excess transition metal oxide cathode materials[J]. Adv Energy Mater, 2018, 8(5): 1701533.
[20] [20] KIM W, HAN W, RYU W, et al. Effects of Cl doping on the structural and electrochemical properties of high voltage LiMn1.5Ni0.5O4 cathode materials for Li-ion batteries[J]. J Alloys Compd, 2014, 592: 48-52.
[21] [21] WANG T, ZHANG C, LI S, et al. Regulating anion redox and cation migration to enhance the structural stability of Li-rich layered oxides[J]. ACS Appl Mater Interfaces, 2021, 13: 12159-12168.
[22] [22] GUO B, ZHAO J, FAN X, et al. Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material[J]. Electrochim Acta, 2017, 236: 171-179.
[23] [23] ZHANG C, FENG Y, WEI B, et al. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode[J]. Nano Energy, 2020, 75: 104995.
[24] [24] QING R, SHI J, XIAO D, et al. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Adv Energy Mater, 2016, 6: 1501914.
[25] [25] SHAJU K, RAO G, CHOWDARI B, et al. Li ion kinetic studies on spinel cathodes, Li(M1/6Mn11/6)O4 (M=Mn, Co, CoAl) by GITT and EIS[J]. J Mater Chem, 2002, 13(1): 106-113.
[26] [26] ZHENG C, BIN Z, TING C, et al. A simple gas-solid treatment for surface modification of Li-rich oxides cathodes[J]. Angew Chem Int Ed, 2021, 60: 23248-23255.
[27] [27] DAI K, MAO J, ZHUO Z, et al. Negligible voltage hysteresis with strong anionic redox in conventional battery electrode[J]. Nano Energy, 2020, 74: 104831.
[28] [28] BAUR C, I KALLQUST, J CHABLE, et al. Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes[J]. J Mater Chem A, 2019, 7: 21244-21253.
[29] [29] CAMBAZ, ALI M, VINAYAN, et al. Design of nickel-based cation-disordered rock-salt oxides: The effect of transition metal (M=V, Ti, Zr) substitution in LiNi0.5M0.5O2 binary systems[J]. ACS Appl Mater Interfaces, 2018, 10: 21957-21964.
[30] [30] MOHANTY D, KALNAUS S, MEISNER R A, et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. J Power Sources, 2013, 229(1): 239-248.
[31] [31] LIN T, SCHULLI T U, HU Y, et al. Faster activation and slower capacity/voltage fading: A bifunctional urea treatment on Lithium-rich cathode materials[J]. Adv Funct Mater, 2020, 30(13): 1909192.
[32] [32] HUA W, CHEN M, SCHWARZ B, et al. Oxygen uptake: lithium/ oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides[J]. Adv Energy Mater, 2019, 9(8): 1803094.
[33] [33] WEI W, CHEN L, PAN A, et al. Roles of surface structure and chemistry on electrochemical processes in lithium-rich layered oxide cathodes[J]. Nano Energy, 2016, 30: 580-602.
Get Citation
Copy Citation Text
ZHOU Guojun, Qu Yifan, LI Afei, TANG Weijian, CHEN Zhangxian, YANG Zeheng, ZHANG Weixin. Cl-Doping Lithium-Rich Cathode Material Li1.2Ni0.13Co0.13Mn0.54O2 for Regulating Lattice Oxygen Reactivity and Electrochemical Performance[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2579
Category:
Received: Jan. 17, 2022
Accepted: --
Published Online: Jan. 22, 2023
The Author Email: Guojun ZHOU (zhouguojun@mail.hfut.edu.cn)