High Power Laser and Particle Beams, Volume. 34, Issue 2, 026016(2022)

Development and test of neutron activation simulation program based on JMCT software

Meng Huang1... Jianyu Zhu1,*, Jun Wu1, Songbai Zhang2, Rui Li3 and Gang Li3 |Show fewer author(s)
Author Affiliations
  • 1Center for Strategic Studies, China Academy of Engineering Physics, Beijing 100088, China
  • 2School of Automation and Information Engineering, Sichuan University of Science & Engineering, Yibin 644005, China
  • 3Software Center for High Performance Numerical Simulation, China Academy of Engineering Physics, Beijing 100088, China
  • show less
    Figures & Tables(14)
    Framework of neutron activation simulation program
    Databases of half-lives and γ-decay of radionuclides
    Output file of radionuclide numbers of neutron activation simulation program
    Nuclear warhead model
    Spectra of neutrons emitted from nuclear warhead models
    Relationship curves between numbers of 7 radionuclides and idle time
    Spectra of γ rays entering HPGe detector under different neutron irradiation time and idle time
    • Table 1. Size, mass and ingredient parameters of structures in nuclear warhead model

      View table
      View in Article

      Table 1. Size, mass and ingredient parameters of structures in nuclear warhead model

      structureouter radius/cmmass/kgingredient parameters
      hole5.770.0vacuum
      fissile core7.012.0weapons-grade uranium (234U(1%), 235U(93.3%), 238U(5.5%), O(0.2%))
      reflector9.03.0natural beryllium
      tamper12.079.0Model 1: depleted uranium (235U(0.3%), 238U(99.7%)); Model 2: Natural tungsten
      explosive22.071.0explosive (atom number ratio is H:C:N:O=2:1:2:2)
      shell23.017.0natural aluminium
    • Table 2. Neutron fields of fissile materials

      View table
      View in Article

      Table 2. Neutron fields of fissile materials

      materialnuclideportionneutron yield/neutrons∙s−1
      (α, n) reactionspontaneous fission
      weapon-grade uranium234U1%505.546
      235U93.3%0.0120.299
      238U5.5%0.00113.57
      O0.2%00
      depleted uranium235U0.3%00.299
      238U99.7%013.57
    • Table 3. Numbers of neutrons emitted from nuclear warhead model

      View table
      View in Article

      Table 3. Numbers of neutrons emitted from nuclear warhead model

      simulation softwarecontribution of fission core to neutron leakage from shell (neutrons/s)contribution of tamper to neutron leakage from shell (neutrons/s)total neutron leakage (neutrons/s)
      Model 1neutron activation simulation program18718736
      MCNP518720738
      Model 2neutron activation simulation program13013
      MCNP513013
    • Table 4. Radionuclides in nuclear warhead model

      View table
      View in Article

      Table 4. Radionuclides in nuclear warhead model

      radionuclidenuclear reactionhalf-lifedecay type
      16N16O(n,p)16N7.130 sβ, γ
      15O16O(n,2n)15O122.240 sβ+
      13N14N(n,2n)13N9.970 minβ+, β, γ
      11C12C(n,2n)11C20.48 minβ+, β, γ
      14C14N(n,p)14C5730 aβ
    • Table 5. Production of radionuclides in explosive

      View table
      View in Article

      Table 5. Production of radionuclides in explosive

      simulation softwareneutrons simulatedequivalent measuring timenumber of radionuclide
      16N15O13N11C14C
      Model 1neutron activation simulation program1079.19×103 s470405.56×106
      GEANT41079.19×103 s610505.72×106
      Model 2neutron activation simulation program1075.23×105 s350205.93×106
      GEANT41075.23×105 s360906.07×106
    • Table 6. Element composition of concrete floor model

      View table
      View in Article

      Table 6. Element composition of concrete floor model

      elementatom proportion/%nuclide
      H13.31H/2H
      O73.716O/17O
      Na1.823Na
      Mg0.324Mg/25Mg/26Mg
      Al4.227Al
      Si0.328Si/29Si/30Si
      K1.239K/40K/41K
      Ca4.840Ca/42Ca/43Ca/44Ca/46Ca/48Ca
      Fe0.454Fe/56Fe/57Fe/58Fe
    • Table 7. Information of activation products of concrete floor model

      View table
      View in Article

      Table 7. Information of activation products of concrete floor model

      radionuclidehalf-lifedecay typeyield/s−1activation reaction
      14C5715 aβ1.5917O(n,α)
      16N7.13 sβ0.61316O(n,p)
      20F11.0 sβ0.43223Na(n,α)
      23Ne37.2 sβ1.0523Na(n,p)
      24Na14.96 hβ14.823Na(n,γ), 24Mg(n,p), 27Al(n,α)
      27Mg9.45 minβ7.0527Al(n,p)
      28Al2.25 minβ15.627Al(n,γ), 28Si(n,p)
      36Cl3.01×105 aβ+,EC20.139K(n,α)
      37Ar35.0 dEC82.740Ca(n,α)
      39Ar268 aβ61.639K(n,p), 42Ca(n,α)
      41Ar1.82 hβ0.070041K(n,p)
      40K1.26×109 aβ+,EC,γ26139K(n,γ), 40Ca(n,p)
      42K12.36 hβ2.0441K(n,γ), 42Ca(n,p)
      41Ca1.02×105 aEC29.440Ca(n,γ)
      45Ca162.7 dβ1.1844Ca(n,γ)
      49Ca8.72 minβ0.13448Ca(n,γ)
      54Mn312 dEC,γ0.83554Fe(n,p)
      56Mn2.579 hβ0.14156Fe(n,p)
      55Fe2.73 aEC0.79854Fe(n,γ)
    Tools

    Get Citation

    Copy Citation Text

    Meng Huang, Jianyu Zhu, Jun Wu, Songbai Zhang, Rui Li, Gang Li. Development and test of neutron activation simulation program based on JMCT software[J]. High Power Laser and Particle Beams, 2022, 34(2): 026016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Monte Carlo Methods and Applications

    Received: Aug. 17, 2021

    Accepted: Dec. 14, 2021

    Published Online: Jan. 26, 2022

    The Author Email: Zhu Jianyu (zhujyu@126.com)

    DOI:10.11884/HPLPB202234.210356

    Topics