Semiconductor Optoelectronics, Volume. 43, Issue 1, 1(2022)

Integrated Microwave Photonic RF Frontend Technologies

LI Jiachen... YANG Sigang, CHEN Hongwei and CHEN Minghua* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [2] [2] Sabbagh S, Mafinezhad K. 4~6.3GHz microwave tunable filter employing RF MEMS switches[C]// 6th Inter. Symp. on Telecommunications (IST), 2012: 37-41.

    [3] [3] Kosugi T, Shibata T, Enoki T, et al. A 120GHz millimeter-wave MMIC chipset for future broadband wireless access applications[C]// Microwave Symposium Digest, 2003 IEEE MTT-S International, 2003, 1: 129-132.

    [5] [5] Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 2013, 7(4): 506-538.

    [6] [6] Marpaung D, Yao J, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13(2): 80-90.

    [7] [7] Fandino J S, Munz P, Domenech D, et al. A monolithic integrated photonic microwave filter[J]. Nature Photonics, 2017, 11(2): 124-129.

    [8] [8] Paollela A, Desalvo R, Middleton C, et al. Hybrid integration of RF photonic systems[J]. J. of Lightwave Technol., 2018, 36(21): 5067-5073.

    [9] [9] Yu H, Chen M, Li P, et al. Silicon-on-insulator narrow-passband filter based on cascaded MZIs incorporating enhanced FSR for downconverting analog photonic links[J]. Opt. Express, 2013, 21(6): 6749-6755.

    [10] [10] Yu H, Chen M, Guo Q, et al. Si3N4-based integrated optical analog signal processor and its application in RF photonic frontend[J]. IEEE Photonics J., 2015, 7(5): 1-9.

    [11] [11] Li Jiachen, Yang Sigang, Chen Hongwei, et al. Subwavelength hole defect assisted microring resonator for a compact rectangular filter[J]. Opt. Lett., 2020, 45(11): 3123-3126.

    [12] [12] Li A, Van Vaerenbergh T, De Heyn P, et al. Backscattering in silicon microring resonators: a quantitative analysis[J]. Laser & Photonics Reviews, 2016, 10(3): 420-431.

    [13] [13] Dong P, Feng N N, Feng D, et al. A tunable optical channelizing filter using silicon coupled ring resonators[C]// Conf. on Lasers and Electro-Optics (CLEO), 2010: CThAA6.

    [14] [14] Daniel Pérez, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nature Communications, 2017, 8(1): 636.

    [15] [15] Djordjevic S S, Luo L W, Ibrahim S, et al. Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells[J]. Photon. Technol. Lett., 2011, 23(1): 42-44.

    [16] [16] Li J, Yang S, Chen H, et al. Reconfigurable rectangular filter with continuously tunable bandwidth and wavelength[J]. IEEE Photonics J., 2020, 12(4): 6601309.

    [17] [17] Li Jiachen, Yang Sigang, Chen Hongwei, et al. Hybrid microwave photonic receiver based on integrated tunable bandpass filters[J]. Opt. Express, 2021, 29(7): 11084-11093.

    [18] [18] Zhu Di, Shao Linbo, Yu Mengjie, et al. Integrated photonics on thin-film lithium niobate[J]. Adv. Opt. Photon., 2021, 13(2): 242-352.

    [19] [19] Zhang M, Luke K, Kharel P, et al. Wafer-scale low-loss lithium niobate photonic integrated circuits[J]. Opt. Express, 2020, 28(17): 24452-24458.

    [20] [20] Li Jiachen, Yang Sigang, Chen Hongwei, et al. Fully integrated hybrid microwave photonic receiver[J]. Proc. SPIE, 2021: 1205751.

    [21] [21] Li Jiachen, Zhang Baoyu, Yang Sigang, et al. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector[J]. Photonics Research, 2021, 9(4): 558-566.

    [22] [22] Tran M A, Huang D, Bowers J E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/Ⅲ-Ⅴ heterogeneous integration[J]. APL Photonics, 2019, 4: 111101.

    [23] [23] Tang L, Li J, Yang S, et al. A method for improving reflection tolerance of laser source in hybrid photonic packaged micro-system[J]. IEEE Photon. Technol. Lett., 2021, 33(9): 465-468.

    [24] [24] Felipe D D, Happach M, Kleinert M, et al. Polymer-based integrated tuneable laser with on-chip wavelength locker[C]// European Conf. on Optical Communication (ECOC), 2016: 1-3.

    [25] [25] Kokubun Y, Yoneda S, Matsuura S. Temperature-independent optical filter at 1.55μm wavelength using a silica-based athermal waveguide[J]. Electron. Lett., 1998, 34(4): 367-369.

    [26] [26] Mutsunori Uenuma, Teruaki Motooka. Temperature-independent silicon waveguide optical filter[J]. Opt. Lett., 2009, 34(5): 599-601.

    [27] [27] Li J, Liu Z, Geng Q, et al. Method for suppressing the frequency drift of integrated microwave photonic filters[J]. Opt. Express, 2019, 27(23): 33575-33585.

    Tools

    Get Citation

    Copy Citation Text

    LI Jiachen, YANG Sigang, CHEN Hongwei, CHEN Minghua. Integrated Microwave Photonic RF Frontend Technologies[J]. Semiconductor Optoelectronics, 2022, 43(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 27, 2022

    Accepted: --

    Published Online: Mar. 24, 2022

    The Author Email: Minghua CHEN (chenmh@tsinghua.edu.cn)

    DOI:10.16818/j.issn1001-5868.2022012701

    Topics