Acta Optica Sinica, Volume. 45, Issue 6, 0628004(2025)

Retrieval of Planetary Boundary Layer Height by Remote Sensing Fusion Based on Deep Forest

Zhongxing Zhao... Songlin Fu*, Junjie Chen and wei Xie |Show fewer author(s)
Author Affiliations
  • College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321000, Zhejiang , China
  • show less
    Figures & Tables(17)
    Multi-grained scanning process
    Schematic diagram of cascade forest process
    Schematic diagram of improved cascade forest
    Atmospheric boundary layer height results obtained by improved fcForest inversion
    Inversion results of atmospheric boundary layer height under clear and cloudless weather
    Inversion results of boundary layer height under cloudy weather
    Comparison of inverted ABLHs of different methods for clear weather. (a) MPL; (b) DPL; (c) fcForest
    Comparison of inverted ABLHs of different methods for cloudy weather. (a) MPL; (b) DPL; (c) fcForest
    Comparison of inverted ABLHs of different methods during day. (a) MPL; (b) DPL; (c) fcForest
    Comparison of inverted ABLHs of different methods at night. (a) MPL; (b) DPL; (c) fcForest
    • Table 1. Comparison of experimental results of random forest models using different datasets

      View table

      Table 1. Comparison of experimental results of random forest models using different datasets

      DatasetRRMSE /kmMAE /km
      Fusion remote sensing dataset0.9260.1940.135
      Micropulse lidar dataset0.9060.2170.148
      Doppler lidar dataset0.9100.2130.144
    • Table 2. Comparison of multi-grained scanning results and original datasets

      View table

      Table 2. Comparison of multi-grained scanning results and original datasets

      ConditionRRMSE /kmMAE /km
      Original dataset0.9260.1940.135
      Window scale 20.7610.3390.232
      Window scale 40.8640.2590.175
      Window scale 60.8950.2290.154
      Window scale 80.8940.2300.155
      Window scale 100.8900.2330.156
    • Table 3. Feature importance of feature vectors in primitive dataset

      View table

      Table 3. Feature importance of feature vectors in primitive dataset

      FeatureImportanceChoose
      MPL_10.4007Yes
      MPL_20.0112Yes
      MPL_30.0085Yes
      MPL_40.0078No
      MPL_50.0072No
      MPL_60.0097Yes
      MPL_70.0080No
      MPL_80.0085Yes
      MPL_90.0089Yes
      MPL_100.0095Yes
      DPL0.1653Yes
      Temperature0.0472Yes
      Pressure0.0202Yes
      Speed0.0145Yes
      Humidity0.0815Yes
      Hour0.1913Yes
    • Table 4. Comparison of inversion results of feature screening dataset and original dataset

      View table

      Table 4. Comparison of inversion results of feature screening dataset and original dataset

      DatasetRRMSE /km
      Original dataset0.9260.194
      Feature screening dataset0.9290.190
    • Table 5. Experimental results of boundary layer height inversion by different methods

      View table

      Table 5. Experimental results of boundary layer height inversion by different methods

      MethodRRMSE /kmMAE /km
      Gradient method0.7830.4190.302
      Threshold value method0.8060.3840.226
      Wavelet covariance transform method0.7680.4450.333
      Standard deviation method0.6650.5390.413
      Random forest0.9260.1940.135
      Gradient boosting0.9200.2010.142
      Deep forest0.8910.2340.156
      Feature screening cascade forest0.9350.1820.126
    • Table 6. Experimental results of boundary layer height inversion by different methods

      View table

      Table 6. Experimental results of boundary layer height inversion by different methods

      Time5:4111:2317:3023:30
      Sonde446648565366
      MPL10413827422300
      DPL105495375165
      fcForest479723684520
    • Table 7. Atmospheric boundary layer height results at different time

      View table

      Table 7. Atmospheric boundary layer height results at different time

      Time5:3711:2717:2923:45
      Sonde386815956474
      MPL2151233018811551
      DPL105585105105
      fcForest491920880504
    Tools

    Get Citation

    Copy Citation Text

    Zhongxing Zhao, Songlin Fu, Junjie Chen, wei Xie. Retrieval of Planetary Boundary Layer Height by Remote Sensing Fusion Based on Deep Forest[J]. Acta Optica Sinica, 2025, 45(6): 0628004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 19, 2024

    Accepted: Aug. 16, 2024

    Published Online: Mar. 21, 2025

    The Author Email: Fu Songlin (fu_songlin@zjnu.edu.cn)

    DOI:10.3788/AOS241185

    Topics