Acta Optica Sinica, Volume. 42, Issue 12, 1201001(2022)

Simulation of Land Surface Temperature Inversion for Stratospheric Sensor

Song Ye1,3, Qi Xiahou1,2, Jun Wu2、*, Wei Xiong2, Fangxiao Cui2、**, and Dacheng Li2
Author Affiliations
  • 1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • 2Key Laboratory of General Optical Calibration and Characterization of Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 3Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin 541004, Guangxi, China
  • show less
    Figures & Tables(17)
    Comparison of simulated radiance and path transmittance from stratosphere and top (subgraphs show difference between stratospheric observation and satellite observation). (a) Simulated radiance; (b) path transmittance
    Inversion flow chart of generalized split window algorithm
    Fitting results of each interval. (a) TPW groups; (b) TPW and LST groups
    Inversion results of split window algorithm .(a) Comparison between true value of LST and inversion value; (b) histogram of LST inversion error
    LST inversion error. (a) LST inversion error under different water vapor content; (b) LST inversion error under different zenith angle
    Split window coefficients at different observation heights. (a) TPW range of water vapor is [0,2] cm; (b) TPW range of water vapor is [3, 5] cm
    Influence of surface emissivity uncertainty on LST inversion accuracy
    Influence of emissivity uncertainty on LST inversion accuracy under different water vapor content and observation zenith angle. (a) Different water vapor content; (b) different observation zenith angles
    Influence of NETD on LST inversion error
    Effects of NETD on LST inversion accuracy under different water vapor content and observation zenith angle. (a) Different water vapor content; (b) different observation zenith angle
    Influence of different spectral response offset on LST inversion accuracy
    • Table 1. Group intervals of LST and TPW

      View table

      Table 1. Group intervals of LST and TPW

      Group numberLST /KTPW /cm
      1[0,2]
      2≤282.5[1.5,3.5]
      3[0,2]
      4[277.5, 297.5][1.5,3.5]
      5[3,5]
      6[0,2]
      7[1.5,3.5]
      8[292.5, 312.5][3,5]
      9[4.5,7.8]
      10[0,2]
      11[1.5,3.5]
      12≥307.5[3,5]
      13[4.5,7.8]
    • Table 2. Linear fitting coefficients of split-window algorithm for different TPW sub-ranges

      View table

      Table 2. Linear fitting coefficients of split-window algorithm for different TPW sub-ranges

      TPW /cma0a1a2a3a4a5a6R2
      [0, 2]-1.06881.00330.1667-0.58216.9824-11.159226.39200.9997
      [1.5, 3.5]-6.48671.02230.1267-0.46726.554530.295148.11650.9969
      [3, 5]-14.5641.04920.0641-0.18367.763426.6866-22.01100.9933
      [4.5, 8.0]-17.1891.05250.0800-0.090610.18066.2320-14.49500.9920
    • Table 3. Linear fitting coefficients of split-window algorithm for different TPW and LST sub-ranges

      View table

      Table 3. Linear fitting coefficients of split-window algorithm for different TPW and LST sub-ranges

      LST /KTPW /cma0a1a2a3a4a5a6R2
      ≤282.5[0, 2]-0.37401.00100.1602-0.5425.8333.34993.11130.9998
      [1.5, 3.5]8.48050.96900.1591-0.5228.1244.5125-56.88000.9774
      [0, 2]-1.88401.00600.1654-0.5106.3110.783834.11800.9962
      [277.5,297.5][1.5, 3.5]-3.59900.98740.1224-0.4276.29739.026042.17800.9902
      [3, 5]8.70390.96840.0888-0.1878.720-5.806057.80900.9640
      [0, 2]-7.93001.02710.1669-0.4756.330-6.530048.88800.9963
      [1.5, 3.5]-10.57001.03560.1321-0.4546.75025.036071.49900.9886
      [292.5,312.5][3, 5]-18.03001.06080.0609-0.2167.79027.382023.94600.9827
      [4.5, 7.8]-16.39001.04950.0910-0.12410.370-0.416413.50500.9825
      [0, 2]-14.35001.04830.1724-0.4496.773-18.562053.94600.9975
      [1.5, 3.5]-18.47001.06090.1395-0.5177.35615.802081.95900.9920
      ≥307.5[3, 5]-15.36001.04960.0988-0.3108.62813.80105.59320.9834
      [4.5, 7.8]8.19841.01200.3076-0.19712.490-40.2790-7.11100.9804
    • Table 4. Error of inversion results before and after correction at different observation zenith angles

      View table

      Table 4. Error of inversion results before and after correction at different observation zenith angles

      Observationzenith angle /(°)OriginalRMSE /KCorrectedRMSE /KRMSEreduction /%
      100.19350.19121.19
      200.22750.22311.93
      300.29600.27546.96
      400.45300.367018.98
      500.81770.562631.20
      601.79321.158035.42
      704.72473.345729.19
    • Table 5. Influence of TPW uncertainty on LST inversion

      View table

      Table 5. Influence of TPW uncertainty on LST inversion

      TPW /cm[0,2][1.5,3.5][3,5][4.5,7.8]
      [0,2]0.20260.4325--
      [1.5,3.5]0.37160.35250.6024-
      [3,5]-0.52680.40950.5967
      [4.5,7.8]--0.58720.4859
    • Table 6. Total error of LST inversion caused by coexistence of different emissivity errors and NETD when spectral response drift is ±3 nm

      View table

      Table 6. Total error of LST inversion caused by coexistence of different emissivity errors and NETD when spectral response drift is ±3 nm

      NETD /Kδε=0.5%δε=1.0%δε=1.5%
      0.10.57940.80641.3362
      0.20.73801.01031.4045
      0.30.96811.38791.8663
      0.41.50711.71052.2243
    Tools

    Get Citation

    Copy Citation Text

    Song Ye, Qi Xiahou, Jun Wu, Wei Xiong, Fangxiao Cui, Dacheng Li. Simulation of Land Surface Temperature Inversion for Stratospheric Sensor[J]. Acta Optica Sinica, 2022, 42(12): 1201001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Aug. 23, 2021

    Accepted: Nov. 4, 2021

    Published Online: Jun. 7, 2022

    The Author Email: Wu Jun (wujun@aiofm.ac.cn), Cui Fangxiao (fxcui@aiofm.ac.cn)

    DOI:10.3788/AOS202242.1201001

    Topics