Optics and Precision Engineering, Volume. 31, Issue 12, 1841(2023)
Automatic threshold selection method using exponential Renyi entropy under multi-scale product in stationary wavelet domain
[1] [1] 1吴一全, 孟天亮, 吴诗婳. 图像阈值分割方法研究进展20年(1994—2014)[J]. 数据采集与处理, 2015, 30(1): 1-23. doi: 10.16337/j.1004-9037.2015.01.001WUY Q, MENGT L, WUS H. Research progress of image thresholding methods in recent 20 years (1994-2014)[J]. Journal of Data Acquisition & Processing, 2015, 30(1): 1-23.(in Chinese). doi: 10.16337/j.1004-9037.2015.01.001
[2] [2] 2袁小翠, 吴禄慎, 陈华伟. 基于Otsu方法的钢轨图像分割[J]. 光学 精密工程, 2016, 24(7): 1772-1781. doi: 10.3788/ope.20162407.1772YUANX C, WUL S, CHENH W. Rail image segmentation based on Otsu threshold method[J]. Opt. Precision Eng., 2016, 24(7): 1772-1781.(in Chinese). doi: 10.3788/ope.20162407.1772
[3] [3] 3姜鑫, 陈武雄, 聂海涛, 等. 航空遥感影像的实时舰船目标检测[J]. 光学 精密工程, 2020, 28(10): 2360-2369. doi: 10.37188/ope.20202810.2360JIANGX, CHENW X, NIEH T, et al. Real-time ship target detection based on aerial remote sensing images[J]. Opt. Precision Eng., 2020, 28(10): 2360-2369.(in Chinese). doi: 10.37188/ope.20202810.2360
[4] NIE F, ZHANG P, LI J et al. A novel generalized entropy and its application in image thresholding[J]. Signal Processing, 134, 23-34(2017).
[5] WANG Z Z, XIONG J J, YANG Y M et al. A flexible and robust threshold selection method[J]. IEEE Transactions on Circuits and Systems for Video Technology, 28, 2220-2232(2017).
[6] YAZID H, BASAH S N, RAHIM S A et al. Performance analysis of entropy thresholding for successful image segmentation[J]. Multimedia Tools and Applications, 81, 6433-6450(2022).
[7] [7] 7罗希平, 田捷. 用最大熵原则作多阈值选择的条件迭代算法[J]. 软件学报, 2000, 11(3): 379-385. doi: 10.1038/sj.cr.7290056LUOX P, TIANJ. The ICM algorithm for multi-level threshold selection by maximum entropy criterion[J]. Journal of Software, 2000, 11(3): 379-385.(in Chinese). doi: 10.1038/sj.cr.7290056
[8] CHANG C I, DU Y, WANG J et al. Survey and comparative analysis of entropy and relative entropy thresholding techniques[J]. IEE Proceedings-Vision, Image, and Signal Processing, 153, 837(2006).
[9] Pun T. A new method for grey-level picture thresholding using the entropy of the histogram[J]. Signal Processing, 2, 223-237(1980).
[10] KAPUR JN, SAHOO PK, WONG AK. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 29, 273-285(1985).
[11] ABUTALEB AS. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision, Graphics, and Image Processing, 47, 22-32(1989).
[12] WONG A K C, SAHOO P K. A gray-level threshold selection method based on maximum entropy principle[J]. IEEE Transactions on Systems, Man, and Cybernetics, 19, 866-871(1989).
[13] DE ALBUQUERQUE MP, ESQUEF IA, MELLO AG. Image thresholding using tsallis entropy[J]. Pattern Recognition Letters, 25, 1059-1065(2004).
[14] SAHOO P, WILKINS C, YEAGER J. Threshold selection using Renyi’s entropy[J]. Pattern Recognition, 30, 71-84(1997).
[15] Wang S, Chung FL. Note on the equivalence relationship between Renyi-entropy based and Tsallis-entropy based image thresholding[J]. Pattern Recognition Letters, 26, 2309-2312(2005).
[16] SAHOO PK, ARORA G. A thresholding method based on two-dimensional Renyi’s entropy[J]. Pattern Recognition, 37, 1149-1161(2004).
[17] SAHOO S, SAHOO S S, KUMAR S et al. Optimized Entropy Based Image Segmentation[C], 1-6(13).
[18] ABDEL-KHALEK S, ISHAK AB, OMER OA et al. A two-dimensional image segmentation method based on genetic algorithm and entropy[J]. Optik, 131, 414-422(2017).
[19] [19] 19刘松涛, 刘振兴, 姜康辉. 基于模糊Renyi熵和区域增长的图像目标分割方法[J]. 系统工程与电子技术, 2018, 40(8): 1693-1701. doi: 10.3969/j.issn.1001-506X.2018.08.04LIUS T, LIUZ X, JIANGK H. Image target segmentation method based on fuzzy Renyi entropy and region growing[J]. Systems Engineering and Electronics, 2018, 40(8): 1693-1701. (in Chinese). doi: 10.3969/j.issn.1001-506X.2018.08.04
[20] WANG Y, XU X. An improved level set method to image segmentation tation based on saliency[J]. Journal of Information Processing Systems, 15, 7-21(2019).
[21] HE C M, WANG X B, DENG L Z et al. Image Threshold Segmentation Based on GLLE Histogram[C], 410-415(14).
[22] LEI B, FAN J. Adaptive granulation Renyi rough entropy image thresholding method with nested optimization[J]. Expert Systems With Applications, 203, 117378(2022).
[23] NASON G P, SILVERMAN B W. The Stationary Wavelet Transform and Some Statistical Applications[M]. Wavelets and Statistics, 281-299(1995).
[24] [24] 24薛婷, 钟麦英. 基于SWT与等价空间的LDTV系统故障检测[J]. 自动化学报, 2017, 43(11): 1920-1930. doi: 10.16383/j.aas.2017.c160479XUET, ZHONGM Y. SWT and parity space based fault detection for linear discrete time-varying systems[J]. Acta Automatica Sinica, 2017, 43(11): 1920-1930. (in Chinese). doi: 10.16383/j.aas.2017.c160479
[25] RAMÍREZ-REYES A, HERNÁNDEZ-MONTOYA A, HERRERA-CORRAL G et al. Determining the entropic index q of tsallis entropy in images through redundancy[J]. Entropy, 18, 299(2016).
[26] CAO X H, LI T H, LI H L et al. A robust parameter-free thresholding method for image segmentation[J]. IEEE Access, 7, 3448-3458(2018).
[27] TRUONG M T N, KIM S. Automatic image thresholding using Otsu's method and entropy weighting scheme for surface defect detection[J]. Soft Computing, 22, 4197-4203(2018).
[28] JIA X H, LEI T, DU X G et al. Robust self-sparse fuzzy clustering for image segmentation[J]. IEEE Access, 8, 146182-146195(2020).
[29] WEI T, WANG X, LI X et al. Fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking[J]. Engineering Applications of Artificial Intelligence, 110, 104672(2022).
[30] XIAO H G, ZHANG B L, LIU R H et al. Accurate image segmentation based on adaptive distance regularization level set method[J]. International Journal of Wavelets, Multiresolution and Information Processing, 20, 2250033(2022).
[31] FANG J, LIU H, LIU J et al. Fuzzy region-based active contour driven by global and local fitting energy for image segmentation[J]. Applied Soft Computing, 100, 106982(2021).
[32] CHICCO D, JURMAN G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation[J]. BMC Genomics, 21, 6(2020).
Get Citation
Copy Citation Text
Yaobin ZOU, Xiangdan MENG, Shuifa SUN, Peng CHEN. Automatic threshold selection method using exponential Renyi entropy under multi-scale product in stationary wavelet domain[J]. Optics and Precision Engineering, 2023, 31(12): 1841
Category: Information Sciences
Received: Jul. 18, 2022
Accepted: --
Published Online: Jul. 25, 2023
The Author Email: Yaobin ZOU (zyb@ctgu.edu.cn)