Journal of Innovative Optical Health Sciences, Volume. 14, Issue 4, 2141003(2021)

Construction of Au@Metal-organic framework for sensitive determination of creatinine in urine

Yuning Jiang, Yanzheng Cai, Sen Hu, Xiaoyu Guo, Ye Ying, Ying Wen, Yiping Wu*, and Haifeng Yang
Author Affiliations
  • College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234, P. R. China
  • show less
    References(35)

    [1] [1] E. Hultman, K. Soderlund, J. A. Timmons, G. Cederblad, P. L. Greenha?, "Muscle creatine loading in men," J. Appl. Physiol. 81, 232–237 (1996).

    [2] [2] C. S. Pundir, S. Yadav, A. Kumar, "Creatinine sensors," Trac-Trends Anal. Chem. 50, 42–52 (2013).

    [3] [3] D. S. Ciou, P. H. Wu, Y. C. Huang, M. C. Yang, S. Y. Lee, C. Y. Lin, "Colorimetric and amperometric detection of urine creatinine based on the ABTS radical cation modified electrode," Sens. Actuators B Chem. 314, 128034 (2020).

    [4] [4] S. Kumaravel, S. H. Wu, G. Z. Chen, S. T. Huang, C. M. Lin, Y. C. Lee, C. H. Chen, "Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells, whole blood and creatinine in saliva," Biosens. Bioelectron. 171, 112720 (2021).

    [5] [5] A. Benkert, F. Scheller, W. Schossler, C. Hentschel, B. Micheel, O. Behrsing, G. Scharte, W. St€ocklein, A. Warsinke, "Development of a creatinine ELISA and an amperometric antibody-based creatinine sensor with a detection limit in the nanomolar range," Anal. Chem. 72, 916–921 (2000).

    [6] [6] W. Zhu, B. Y. Wen, L. J. Jie, X. D. Tian, Z. L. Yang, P. M. Radjenovic, S. Y. Luo, Z. Q. Tian, J. F. Li, "Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer," Biosens. Bioelectron. 154, 112067 (2020).

    [7] [7] M. Fernandez-Fernandez, P. Rodriguez-Gonzalez, M. E. Anon Alvarez, F. Rodriguez, F. V. Menendez, J. I. Garcia Alonso, "Simultaneous determination of creatinine and creatine in human serum by doublespike isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS)," Anal. Chem. 87, 3755–3763 (2015).

    [8] [8] E. M. Leung, W. Chan, "A novel reversed-phase HPLC method for the determination of urinary creatinine by pre-column derivatization with ethyl chloroformate: Comparative studies with the standard Ja?e and isotope-dilution mass spectrometric assays," Anal. Bioanal. Chem. 406, 1807–1812 (2014).

    [9] [9] M. Fernandez-Fernandez, A. Gonzalez-Antuna, P. Rodriguez-Gonzalez, M. E. Anon Alvarez, F. V. Alvarez, J. I. Garcia Alonso, "Development of an isotope dilution GC-MS procedure for the routine determination of creatinine in complex serum samples," Clin. Chim. Acta. 431, 96–102 (2014).

    [10] [10] S. Qu, Q. Cao, J. Ma, Q. Jia, "A turn-on fluorescence sensor for creatinine based on the quinolinemodi fied metal organic frameworks," Talanta 219, 121280 (2020).

    [11] [11] X. Liu, J. Ma, P. Jiang, J. Shen, R. Wang, Y. Wang, G. Tu, "Large-scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity," ACS Appl. Mater. Interfaces 12, 45332–45341 (2020).

    [12] [12] H. Wang, X. Jiang, Y. He, "Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications," Analyst 141, 5010–5019 (2016).

    [13] [13] H. Lu, L. Zhu, Y. Lu, J. Su, R. Zhang, Y. Cui, "Manipulating "hot spots" from nanometer to angstrom: Toward understanding integrated contributions of molecule number and gap size for ultrasensitive surface-enhanced Raman scattering detection," ACS Appl. Mater. Interfaces 11, 39359– 39368 (2019).

    [14] [14] D. Cialla, A. Marz, R. Bohme, F. Theil, K. Weber, M. Schmitt, J. Popp, "Surface-enhanced Raman spectroscopy (SERS): Progress and trends," Ana. Bioanal. Chem. 403, 27–54 (2012).

    [15] [15] J. Neng, Q. Zhang, P. Sun, "Application of surfaceenhanced Raman spectroscopy in fast detection of toxic and harmful substances in food," Biosens. Bioelectron. 167, 112480 (2020).

    [16] [16] S. Yadav, J. Satija, "The current state of the art of plasmonic nanofibrous mats as SERS substrates: Design, fabrication and sensor applications," J. Mater. Chem. B 9, 267–282 (2020).

    [17] [17] T. Xuan, Y. Gao, Y. Cai, X. Guo, Y. Wen, H. Yang, "Fabrication and characterization of the stable Ag- Au-metal-organic-frameworks: An application for sensitive detection of thiabendazole," Sens. Actuators B Chem. 293, 289–295 (2019).

    [18] [18] S. De Marchi, L. Vazquez-Iglesias, G. Bodelón, I. Perez-Juste, L. A. Fernandez, J. Perez-Juste, I. Pastoriza-Santos, "Programmable modular assembly of functional proteins on Raman-encoded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as SERS tags," Chem. Mater. 32, 5739– 5749 (2020).

    [19] [19] M. Xu, H. Wu, Y. Tang, G. Mao, G. Wang, L. Zhang, Q. Liu, "One-step in-situ synthesis of porous Fe3t-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel," Microporous Mesoporous Mater. 309, 110539 (2020).

    [20] [20] P. Jiang, Y. Hu, G. Li, "Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surfaceenhanced Raman scattering imaging and drug delivery," Talanta 200, 212–217 (2019).

    [21] [21] Y. Wang, K. Wang, J. Lin, L. Xiao, X. Wang, "The preparation of nano-MIL-101(Fe)@chitosan hybrid sponge and its rapid and efficient adsorption to anionic dyes," Int. J. Biol. Macromol. 165, 2684–2692 (2020).

    [22] [22] N. A. A. Qasem, R. Ben-Mansour, M. A. Habib, "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Appl. Energy 210, 317–326 (2018).

    [23] [23] A. H. Assen, O. Yassine, O. Shekhah, M. Eddaoudi, K. N. Salama, "MOFs for the sensitive detection of ammonia: Deployment of fcu-MOF thin films as effective chemical capacitive sensors," ACS Sens 2, 1294-1301 (2017).

    [24] [24] N. Bhardwaj, S. K. Bhardwaj, J. Mehta, K. H. Kim, A. Deep, "MOF-bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus," ACS Appl. Mater. Interfaces 9, 33589– 33598 (2017).

    [25] [25] X. Cao, S. Hong, Z. Jiang, Y. She, S. Wang, C. Zhang, H. Li, F. Jin, M. Jin, J. Wang, "SERS-active metal-organic frameworks with embedded gold nanoparticles," Analyst 142, 2640–2647 (2017).

    [26] [26] C. Huang, A. Li, X. Chen, T. Wang, "Understanding the role of metal-organic frameworks in surface-enhanced Raman scattering application," Small 16, 2004802 (2020).

    [27] [27] Y. He, Y. Wang, X. Yang, S. Xie, R. Yuan, Y. Chai, "Metal organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of Nterminal pro-brain natriuretic peptide," ACS Appl. Mater. Interfaces 8, 7683–7690 (2016).

    [28] [28] D. Y. Hong, Y. K. Hwang, C. Serre, G. Ferey, J. S. Chang, "Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis," Adv. Funct. Mater. 19, 1537–1552 (2009).

    [29] [29] H. Zhu, M. Du, M. Zou, C. Xu, Y. Fu, "Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates," Dalton Trans. 41, 10465– 10471 (2012).

    [30] [30] Y. Li, H. Zhang, P. Liu, D. Wang, Y. Li, H. Zhao, "Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity," Small 9, 3336–3344 (2013).

    [31] [31] J. Sun, G. Yu, Q. Huo, Q. Kan, J. Guan, "Epoxidation of styrene over Fe(Cr)-MIL-101 metal–organic frameworks," RSC Adv. 4, 38048– 38054 (2014).

    [32] [32] A. Gavezzotti, L. L. Presti, "Building blocks of crystal engineering: A large-database study of the intermolecular approach between C–H donor groups and O, N, Cl, or F acceptors in organic crystals," Cryst. Growth Des. 16, 2952–2962 (2016).

    [33] [33] B. Milan, D. L. Tery, B. M. Rodolfo, A. O. James, "Buffering system and its use in electrophoretic processes," US Patent, 5447612 (1995).

    [34] [34] K. Vikram, S. Mishra, S. K. Srivastava, R. K. Singh, "Low temperature Raman and DFT study of creatinine," J. Mol. Struct. 1012, 141–150 (2012).

    [35] [35] H. M. Heise, G. Voigt, P. Lampen, L. Küpper, S. Rudlo?, G. Werner, "Multivariate calibration for the determination of analytes in urine using midinfrared attenuated total reflection spectroscopy," Appl. Spectrosc. 55, 434–443 (2001).

    Tools

    Get Citation

    Copy Citation Text

    Yuning Jiang, Yanzheng Cai, Sen Hu, Xiaoyu Guo, Ye Ying, Ying Wen, Yiping Wu, Haifeng Yang. Construction of Au@Metal-organic framework for sensitive determination of creatinine in urine[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2141003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 18, 2021

    Accepted: Mar. 22, 2021

    Published Online: Aug. 23, 2021

    The Author Email: Wu Yiping (yipingwu@shnu.edu.cn)

    DOI:10.1142/s1793545821410030

    Topics