Journal of Innovative Optical Health Sciences, Volume. 7, Issue 2, 1350038(2014)

Real-time in situ detection and quantification of bacteria in the Arctic environment

Linda Powers1、*, Walther R. Ellis Jr.2, and Christopher R. Lloyd3
Author Affiliations
  • 1Department of Electrical and Computer Engineering Department of Biomedical Engineering University of Arizona, Tucson, AZ 85721
  • 2Department of Biomedical Engineering University of Arizona, Tucson, AZ 85721
  • 3MicroBioSystems of Arizona, 1665 E 18th St. Suite 204, Tucson, AZ 85719
  • show less
    References(33)

    [1] [1] N. S. Hobson, I. Tothill, A. P. F. Turner, "Microbial detection," Biosens. Bioelectron 11, 455–477 (1996).

    [2] [2] M. Manafi, W. Kneifel, S. Bascomb, "Fluorogenic and chromogenic substrates used in bacterial diagnosis," Microbiol. Rev. 1991, 335–348 (1991).

    [3] [3] J. Oliver, "Recent findings on the viable but nonculturable state in pathogenic bacteria," FEMS Microbiol. Rev. 34, 415–425 (2010).

    [4] [4] N. Tarcea, M. Harz, P. R€osch, T. Frosch, M. Schmitt, H. Thiele, R. Hochleitner, J. Popp, "UV Raman spectroscopy — a technique for biological and mineralogical in-situ planetary studies," Spectrochim. Acta 68A, 1029–1035 (2007).

    [5] [5] M. Krause, P. R€osch, B. Radt, J. Popp, "Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy," Anal. Chem. 80, 8568–8575 (2008).

    [6] [6] M. Harz, P. R€osch, J. Popp, "Vibrational spectroscopy — a powerful tool for the rapid identifi- cation of microbial cells at the single-cell level," Cytometry 75A, 104–113 (2009).

    [7] [7] J. J. Ojeda, M. E. Romero-Gonzalez, S. A. Banwart, "Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy," Anal. Chem. 81, 6467–6473 (2009).

    [8] [8] M. S.Ammor, "Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization," J. Fluorescence 17, 455–459 (2007).

    [9] [9] L. Powers, "Method and apparatus for sensing the presence of microbes," U.S. Patent 5,760, 406 (1998).

    [10] [10] L. Powers, "Method and apparatus for sensing the presence of microbes," U.S. Patent 5,968, 766 (1999).

    [11] [11] C. Estes, A. Duncan, B. Wade, C. Lloyd, W. Ellis Jr., L. Powers, "Reagentless detection of microorganisms by intrinsic fluorescence," Biosens. Bioelectron 18, 511–519 (2003).

    [12] [12] L. Powers, C. R. Lloyd, "Method and apparatus for detecting the presence of microbes and determining their physiological status," U.S. Patent 6,750, 006 (2004).

    [13] [13] L. Powers, C. R. Lloyd, "Method and apparatus for detecting and imaging the presence of biological materials," U.S. Patent 7,186, 990 B2 (2007a).

    [14] [14] L. Powers, C. R. Lloyd, "Method for detecting the presence of dormant cryptobiotic microorganisms," U.S. Patent 7,211, 377 B1 (2007b).

    [15] [15] B. Chance, The Harvey Lectures, Series 49, 1953– 1954, Academic Press, NY, pp. 145–175 (1955).

    [16] [16] B. Chance, B. Theorell, "Localization and kinetics of reduced pyridine nucleotide in living cells by micro- fluorimetry," J. Biol. Chem. 2234, 3044–3050 (1959).

    [17] [17] L. Duysens, J. Amesz, "Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible regions," Biochim. Biophys. Acta 24, 19–26 (1957).

    [18] [18] A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, R. R. Alfano, "Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation," Appl. Opt. 42, 4080–4087 (2003).

    [19] [19] J. Lackowicz, Topics in Fluorescence Spectroscopy, Vol. 3, Plenum Press, New York (1991).

    [20] [20] K. Ka tovska, J. Elster, M. Stibal, H. antruckova, "Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic)," Microb. Ecol. 50, 396–407 (2005).

    [21] [21] S. M. Cheng, J. M. Foght, "Cultivation-independent and -dependent characterization of bacteria resident beneath John Evans glacier," FEMS Microbiol. Ecol. 59, 318–330 (2007).

    [22] [22] K. Katovska, M. Stibal, M. abacka, B. Cerna, H. antruckova, J. Elster, "Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epi- fluorescence microscopy and PLFA," Polar Biol. 30, 277–287 (2007).

    [23] [23] B. Lanoil, M. Skidmore, J. C. Priscu, S. Han, W. Foo, S. W. Vogel, S. Tulaczyk, H. Engelhardt, "Bacteria beneath the West Antarctic Ice Sheet," Environ. Microbiol. 11, 609–615 (2009).

    [24] [24] J. L. Wadham, S. Bottrell, M. Tranter, R. Raiswell, "Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier," Earth Planet. Sci. Lett. 219, 341–355 (2004).

    [25] [25] S. Chakravorty, D. Helb, M. Burday, N. Connell, D. Alland, "A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria," J. Microbiol. Methods 69, 330–339 (2007).

    [26] [26] R. Atlas, Handbook of Media for Environmental Microbiology, 2nd edition, p. 634, Taylor & Francis, Boca Raton, FL (2005).

    [27] [27] L. Powers, C. R. Lloyd, "Method and apparatus for detecting the presence of microbes with frequency modulated multiwavelength intrinsic fluorescence," U.S. Patent 7,824, 883 (2010).

    [28] [28] B. R. Copeland, M. Chen, B. D. Wade, L. S. Powers, "A noise-driven strategy for background estimation and event detection in data streams," Signal Process. 86, 3739–3751 (2006).

    [29] [29] M. Sharp, J. Parkes, B. Craig, I. J. Fairchild, H. Lamb, M. Tranter, "Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling," Geology 27, 107–110 (1999).

    [30] [30] M. L. Skidmore, J. Foght, M. J. Sharp, "Microbial life beneath a high Arctic glacier," Appl. Environ. Microbiol. 66, 3214–3220 (2000).

    [31] [31] J. A. Mikucki, A. Pearson, D. T. Johnston, A. V. Turchyn, J. Farquhar, D. P. Schrag, A. D. Anbar, J. C. Priscu, P. A. Lee, "A contemporary microbially maintained subglacial ferrous `ocean'," Science 324, 397–400 (2009).

    [32] [32] T. N. Srinivas, S. S. N. Rao, P. V. V. Reddy, M. S. Pratibha, B. Sailaja, B. Kavya, K. K. Hara, Z. Begum, S. M. Singh, S. Shivaji, "Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-Alesund, Svalbard. Arctic," Curr. Microbiol. 59, 537–547 (2009).

    [33] [33] J. Foght, J. Aislabie, S. Turner, C. E. Brown, J. Ryburn, D. J. Saul, W. Lawson, "Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers," Microb. Ecol. 47, 329–340 (2004).

    Tools

    Get Citation

    Copy Citation Text

    Linda Powers, Walther R. Ellis Jr., Christopher R. Lloyd. Real-time in situ detection and quantification of bacteria in the Arctic environment[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350038

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 18, 2013

    Accepted: Aug. 19, 2013

    Published Online: Jan. 10, 2019

    The Author Email: Powers Linda (lsp@ece.arizona.edu)

    DOI:10.1142/s1793545813500387

    Topics