Infrared and Laser Engineering, Volume. 50, Issue 9, 20210056(2021)

Thermal design and validation of a geosynchronous orbit infrared camera

Nana Xu1,2, Feng Yu1,2、*, and Zhenhua Zhou1,2
Author Affiliations
  • 1Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 2Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, Beijing 100094, China
  • show less
    Figures & Tables(13)
    Schematic diagram of camera structure
    Variation curve of solar radiation heat flux on +Z side
    Diagram of minimum evasion angle
    Diagram of minimum evasion angle
    Thermal cover closing duration
    Thermal analysis model
    Temperature comparison of main optical system with different schemes
    Schematic diagram of detector assembly
    Schematic diagram of heat dissipation path
    • Table 1. Internal heat source distribution of the camera

      View table
      View in Article

      Table 1. Internal heat source distribution of the camera

      ComponentsHeat load/WWorking time
      Optical path switching and focusing motor, etc15Short time (1-2 min/d)
      Focal plane circuit box2Long time (>20 h/d)
      Video processor18Long time (>20 h/d)
      Power box15Long time (>20 h/d)
      Refrigerator50Long time (>20 h/d)
      Shimmer focusing and circuit box10Short time (<5 min/d)
    • Table 2. Temperature demand of the camera components

      View table
      View in Article

      Table 2. Temperature demand of the camera components

      ComponentsTemperature requirement
      Survival case/℃Imaging case/℃
      Baffle≤100≤100
      Main bearing structure>020±3
      Main optical system>1220±3
      Rear optical system>1220±5
      Hot end and compressor of the refrigerator−20-23−20-23
      Video processor and power box−20-55−20-55
      Shimmer circuit box0-500-50
      Thermal cover mechanism0-700-70
    • Table 3. Ground test cases

      View table
      View in Article

      Table 3. Ground test cases

      CasesSpace heat flowBoundaryWorking mode
      Survival case0Low temperatureSurvival mode,all the heat sources are off
      Low temperature caseInitial stage of vernal equinoxLow temperatureStandby mode, only the refrigerator is on
      High temperature caseFinal stage of summer solsticeHigh temperatureImaging mode, all the heat sources are on
    • Table 4. Temperature date of ground test and on- orbit

      View table
      View in Article

      Table 4. Temperature date of ground test and on- orbit

      ComponentsTransfer orbit (Survival mode)Geosynchronous orbit
      Ground test temperature/℃On-orbit temperature/℃Ground test temperature/℃On-orbit temperature/℃
      Main mirror13.59-13.6213.5-13.917.75-19.9117.7-20.6
      Secondary mirror14.2-14.2214.3-14.618.68-20.0818.5-21.5
      Main bearing structure15.02-15.3315.1-15.320.01-21.9920.0-20.7
      Rear optical system13.8-14.214.3-14.418.6-20.619.2-20.0
      Compressor−2.37- −2.35−2.8- −2.55.44-8.443.5-6.5
      Hot end−3.58- −3.56−4.16- −3.98.33-13.054.9-6.8
      Video processor−3.17- −3.15−3.2- −2.81.95-14.521.5-13.5
      Power box−4.1- −4.0−4.0- −3.91.12-6.730.6-5.4
      Shimmer circuit box14.7-14.914.5-14.719.79-27.6719.4-27.5
      Thermal cover mechanism4-146.7-12.710.2-24.18.0-22.1
    Tools

    Get Citation

    Copy Citation Text

    Nana Xu, Feng Yu, Zhenhua Zhou. Thermal design and validation of a geosynchronous orbit infrared camera[J]. Infrared and Laser Engineering, 2021, 50(9): 20210056

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared technology and application

    Received: Jan. 24, 2021

    Accepted: --

    Published Online: Oct. 28, 2021

    The Author Email: Yu Feng (njlgyufeng@163.com)

    DOI:10.3788/IRLA20210056

    Topics