Acta Photonica Sinica, Volume. 48, Issue 12, 1206002(2019)

Temperature Error Modeling and Real-time Compensation of Fiber Optic Gyroscope Based on PSO-SVR

Chun-fu HUANG... An LI, Fang-jun QIN* and Zhi WANG |Show fewer author(s)
Author Affiliations
  • School of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
  • show less
    Figures & Tables(14)
    PSO-SVR算法流程图PSO-SVR algorithm flowchart
    温度变化率实时获取Real-time acquisition of temperature change rate
    FOG温度误差在线补偿FOG temperature error online compensation
    最小二乘补偿效果Compensation effect of least squares
    RBF神经网络补偿效果Compensation effect of RBF neural networks
    PSO-SVR补偿效果Compensation effect of PSO-SVR
    最小二乘法实时补偿效果Real-time compensation effect of least squares
    RBF神经网络实时补偿效果Real-time compensation effect of RBF neural networks
    PSO-SVR实时补偿效果Real-time compensation effect of PSO-SVR
    • Table 1. PSO parameters setting

      View table
      View in Article

      Table 1. PSO parameters setting

      ParametersValue
      Population size n60
      Number of iterations m100
      Learning factor c12
      Learning factor c22
    • Table 2. Best parameters for SVR obtained by PSO

      View table
      View in Article

      Table 2. Best parameters for SVR obtained by PSO

      ParametersεCσ
      Value3.59×10-551.8688.22
    • Table 3. Comparison of results of threemodeling methods

      View table
      View in Article

      Table 3. Comparison of results of threemodeling methods

      SchemesRMSEMaximum error/(°·h-1)
      Before compensation8.09×10-21.28×10-1
      Least squares9.71×10-33.34×10-2
      RBF neural networks5.50×10-32.69×10-2
      PSO-SVR4.28×10-47.40×10-4
    • Table 4. Comparison of real-time compensation results

      View table
      View in Article

      Table 4. Comparison of real-time compensation results

      SchemesRMSEMaximumerror/(°·h-1)
      Before compensation6.99×10-21.24×10-1
      Least squares1.55×10-21.00×10-1
      RBF neural networks2.02×10-21.52×10-1
      PSO-SVR1.32×10-26.54×10-2
    • Table 5. Operation time

      View table
      View in Article

      Table 5. Operation time

      SchemesTime of 10 000 compensation points/sAverage time of per compensation point/s
      Least squares0.151.50×10-5
      RBF neural networks88.608.86×10-3
      PSO-SVR1.111.11×10-4
    Tools

    Get Citation

    Copy Citation Text

    Chun-fu HUANG, An LI, Fang-jun QIN, Zhi WANG. Temperature Error Modeling and Real-time Compensation of Fiber Optic Gyroscope Based on PSO-SVR[J]. Acta Photonica Sinica, 2019, 48(12): 1206002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 25, 2019

    Accepted: Sep. 10, 2019

    Published Online: Mar. 17, 2020

    The Author Email: QIN Fang-jun (haig2005@126.com)

    DOI:10.3788/gzxb20194812.1206002

    Topics