Acta Optica Sinica, Volume. 42, Issue 11, 1134021(2022)

Efficient Extreme-Ultraviolet Continuum from Carbon Nanotube Foams

Yinren Shou1, Zhuo Pan1, Zhengxuan Cao1, Dahui Wang2, Pengjie Wang1, Jianbo Liu1, Zhusong Mei1, Defeng Kong1, Yanying Zhao1, Xueqing Yan1,3,4, and Wenjun Ma1,3、*
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi′an 710024, Shaanxi, China
  • 3Beijing Laser Acceleration Innovation Center, Beijing 101407, China
  • 4Center for Applied Physics and Technology, Peking University, Beijing 100871, China
  • show less
    References(30)

    [1] Attwood D[M]. Soft X-rays and extreme ultraviolet radiation: principles and applications(2000).

    [2] Zong N, Hu W M, Wang Z M et al. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J]. Chinese Optics, 13, 28-42(2020).

    [3] Baksh P D, Ostr il M, Miszczak M et al. 6(18): eaaz3025[J]. correlative extreme ultraviolet coherent imaging of mouse hippocampal neurons at high resolution. Science Advances(2020).

    [4] Yu Y, Li Q M, Yang J Y et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 46, 0100005(2019).

    [5] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 595, 516-520(2021).

    [6] Zhao Y P, Xu Q, Li Q et al. 13.5 nm extreme ultraviolet light source based on discharge produced Xe plasma[J]. Chinese Journal of Lasers, 45, 1100001(2018).

    [7] Xu S Y, Li Y F, Zhu X X et al. Dispersion control and beamline design of extreme ultraviolet attosecond pulses[J]. Chinese Journal of Lasers, 48, 0501009(2021).

    [8] Fomenkov I V, Schafgans A A, Tao Y Z et al. Industrialization of a robust EUV source for high-volume manufacturing and power scaling beyond 250 W[J]. Proceedings of SPIE, 10583, 1058327(2018).

    [9] Li Z G, Dou Y P, Xie Z et al. Characteristics of extreme ultraviolet emission from laser-produced plasma on structured Sn target[J]. Chinese Journal of Lasers, 48, 1601005(2021).

    [10] He J, Wu T, Yang L. Study on ultraviolet radiation characteristics of pulse laser-induced hafnium plasma[J]. Laser & Optoelectronics Progress, 57, 191402(2020).

    [11] Wang P J, Qi G J, Pan Z et al. Fabrication of large-area uniform carbon nanotube foams as near-critical-density targets for laser-plasma experiments[J]. High Power Laser Science and Engineering, 9, e29(2021).

    [12] Ma W J, Kim I J, Yu J Q et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 122, 014803(2019).

    [13] Bin J H, Ma W J, Wang H Y et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas[J]. Physical Review Letters, 115, 064801(2015).

    [14] Wang P J, Gong Z, Lee S G et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity[J]. Physical Review X, 11, 021049(2021).

    [15] Tan B Z, Yang Q G, Liu D B et al. Experimental study on Si K-edge X-ray absorption near-edge structure with M-shell radiation[J]. Acta Optica Sinica, 38, 0330001(2018).

    [16] Wang Z S, Huang Q S, Zhang Z et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 41, 0131001(2021).

    [17] Liu M, Li Y Q. Graded multilayer film design method of anamorphic magnification extreme ultraviolet lithography objective system[J]. Acta Optica Sinica, 40, 0522001(2020).

    [18] Choi I W, Jeon C, Lee S G et al. Highly efficient double plasma mirror producing ultrahigh-contrast multi-petawatt laser pulses[J]. Optics Letters, 45, 6342-6345(2020).

    [19] Ammosov M V, Delone N B, Krainov V P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field[J]. Soviet Journal of Experimental and Theoretical Physics, 64, 1191(1986).

    [20] Shou Y R, Wang D H, Wang P J et al. Automated positioning of transparent targets using defocusing method in a laser proton accelerator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 927, 236-239(2019).

    [21] Futaba D N, Hata K, Yamada T et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 5, 987-994(2006).

    [22] Zhu Q, Yuan X T, Zhu Y H et al. Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays[J]. Acta Physica Sinica, 67, 028201(2018).

    [23] Ding T, Rebholz M, Aufleger L et al. Nonlinear coherence effects in transient-absorption ion spectroscopy with stochastic extreme-ultraviolet free-electron laser pulses[J]. Physical Review Letters, 123, 103001(2019).

    [24] Derouillat J, Beck A, Pérez F et al. Smilei: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation[J]. Computer Physics Communications, 222, 351-373(2018).

    [25] Shou Y R, Hu R H, Gong Z et al. Cascaded generation of isolated sub-10 attosecond half-cycle pulses[J]. New Journal of Physics, 23, 053003(2021).

    [26] Shen X F, Pukhov A, Günther M M et al. Bright betatron X-rays generation from picosecond laser interactions with long-scale near critical density plasmas[J]. Applied Physics Letters, 118, 134102(2021).

    [27] Chen J Y, Xu S, Tang N et al. Enhanced soft X-ray betatron radiation from a transversely oscillating laser plasma wake[J]. Optics Express, 29, 13302-13313(2021).

    [28] Shou Y R, Wang D H, Wang P J et al. High-efficiency generation of narrowband soft X-rays from carbon nanotube foams irradiated by relativistic femtosecond lasers[J]. Optics Letters, 46, 3969-3972(2021).

    [29] Chung H K, Chen M H, Morgan W L et al. FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements[J]. High Energy Density Physics, 1, 3-12(2005).

    [30] Nishikawa T, Suzuki S, Watanabe Y et al. Efficient water-window X-ray pulse generation from femtosecond-laser-produced plasma by using a carbon nanotube target[J]. Applied Physics B, 78, 885-890(2004).

    Tools

    Get Citation

    Copy Citation Text

    Yinren Shou, Zhuo Pan, Zhengxuan Cao, Dahui Wang, Pengjie Wang, Jianbo Liu, Zhusong Mei, Defeng Kong, Yanying Zhao, Xueqing Yan, Wenjun Ma. Efficient Extreme-Ultraviolet Continuum from Carbon Nanotube Foams[J]. Acta Optica Sinica, 2022, 42(11): 1134021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Jan. 28, 2022

    Accepted: Mar. 3, 2022

    Published Online: Jun. 3, 2022

    The Author Email: Ma Wenjun (wenjun.ma@pku.edu.cn)

    DOI:10.3788/AOS202242.1134021

    Topics